Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Example 1:
Input: [3,2,1,5,6,4]
and k = 2
Output: 5
Example 2:
Input: [3,2,3,1,2,4,5,5,6]
and k = 4
Output: 4
Note:
You may assume k is always valid, 1 ≤ k ≤ array's length.
M1: 用min heap
维护一个大小为k的min heap
time: O(k + (n-k)logk), space: O(k)
class Solution { public int findKthLargest(int[] nums, int k) { PriorityQueue<Integer> minHeap = new PriorityQueue<>(); for(int n : nums) { minHeap.offer(n); if(minHeap.size() > k) minHeap.poll(); } return minHeap.peek(); } }
M2: max heap
把所有元素入队,再一个个poll出来
time: O(n + klogn), space: O(n)
class Solution { public int findKthLargest(int[] nums, int k) { PriorityQueue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a); for(int n : nums) { maxHeap.offer(n); } int res = 0; while(maxHeap.size() > nums.length - k) { res = maxHeap.poll(); } return res; } }
M3: sort
基于select sort
time: O(nlogn), space: O(logn)
class Solution { public int findKthLargest(int[] nums, int k) { Arrays.sort(nums); return nums[nums.length - k]; } }
M4: quick select
和selection sort思路一样,选择一个元素作为基准来对元素进行分区,将小于和大于基准的元素分在基准左边和右边的两个区域。不同的是,快速选择并不递归访问双边,而是只递归进入一边的元素中继续寻找。这降低了平均时间复杂度,从O(n log n)至O(n),不过最坏情况仍然是O(n2)。 -- from wikipedia
https://stackoverflow.com/questions/5945193/average-runtime-of-quickselect/25796762#25796762
每次选区间的最右值作为pivot,然后把小于pivot的值放在左边,大于等于pivot的值放在右边
每次舍去不符合条件的一半,n+(n/2)+(n/4)..1 = n + (n-1) = O(2n-1) = O(n)
time: O(n) -- worst case O(n ^ 2), space: O(1)
class Solution { public int findKthLargest(int[] nums, int k) { return quickSelect(nums, 0, nums.length - 1, nums.length - k); } private int quickSelect(int[] nums, int left, int right, int target) { if (left > right) { return Integer.MAX_VALUE; } int pivot = nums[right]; int start = left, end = right - 1; while(start <= end) { if(nums[start] < pivot) { start++; } else if(nums[end] >= pivot) { end--; } else { swap(nums, start++, end--); } } swap(nums, start, right); if(start == target) { return nums[start]; } else if(start < target) { return quickSelect(nums, start + 1, right, target); } else { return quickSelect(nums, left, start - 1, target); } } private void swap(int[] nums, int i, int j) { int tmp = nums[i]; nums[i] = nums[j]; nums[j] = tmp; } }
二刷:
class Solution { public int findKthLargest(int[] nums, int k) { return quickSelect(nums, 0, nums.length - 1, nums.length - k); } public int quickSelect(int[] nums, int left, int right, int target) { if(left > right) { return Integer.MAX_VALUE; } Random r = new Random(); int pivotIdx = left + r.nextInt(right - left + 1); int pivot = nums[pivotIdx]; swap(nums, pivotIdx, right); int start = left, end = right - 1; while(start <= end) { if(nums[start] < pivot) { start++; } else if(nums[end] >= pivot) { end--; } else { swap(nums, start++, end--); } } swap(nums, start, right); if(start == target) { return nums[start]; } else if(start < target) { return quickSelect(nums, start + 1, right, target); } else { return quickSelect(nums, left, start - 1, target); } } public void swap(int[] arr, int i, int j) { int tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } }