You are given an integer array prices
where prices[i]
is the price of a given stock on the ith
day.
Design an algorithm to find the maximum profit. You may complete at most k
transactions.
Notice that you may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
Example 1:
Input: k = 2, prices = [2,4,1] Output: 2 Explanation: Buy on day 1 (price = 2) and sell on day 2 (price = 4), profit = 4-2 = 2.
Example 2:
Input: k = 2, prices = [3,2,6,5,0,3] Output: 7 Explanation: Buy on day 2 (price = 2) and sell on day 3 (price = 6), profit = 6-2 = 4. Then buy on day 5 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
Constraints:
0 <= k <= 109
0 <= prices.length <= 104
0 <= prices[i] <= 1000
dp (optimal), time = O(nk), space = O(k)
class Solution { public int maxProfit(int k, int[] prices) { int n = prices.length; if(n < 2) { return 0; } if(k >= n / 2) { int maxProfit = 0; for(int i = 1; i < n; i++) { maxProfit += Math.max(0, prices[i] - prices[i - 1]); } return maxProfit; } int[] local = new int[k + 1]; // local[i]: the max profit on day i, stock must be sold on day i int[] global = new int[k + 1]; // global[i]: the max profit on day i for(int i = 1; i < n; i++) { int diff = prices[i] - prices[i - 1]; for(int j = k; j >= 1; j--) { local[j] = Math.max(global[j - 1] + Math.max(0, diff), local[j] + diff); global[j] = Math.max(global[j], local[j]); } } return global[k]; } }
dp, time = O(nk), space = O(nk)
class Solution { public int maxProfit(int k, int[] prices) { int n = prices.length; if(n < 2) { return 0; } if(k >= n / 2) { int maxProfit = 0; for(int i = 1; i < n; i++) { maxProfit += Math.max(0, prices[i] - prices[i - 1]); } return maxProfit; } // mustSell[i][j]: the max profit in first i days with at most j transactions, stock must be sold on day i // globalBest[i][j]: the max profit in first i days with at most j transactions int[][] mustSell = new int[n][k + 1]; int[][] globalBest = new int[n][k + 1]; for(int i = 1; i < n; i++) { int diff = prices[i] - prices[i - 1]; mustSell[i][0] = 0; for(int j = 1; j <= k; j++) { mustSell[i][j] = Math.max(globalBest[i - 1][j - 1] + diff, mustSell[i - 1][j] + diff); globalBest[i][j] = Math.max(globalBest[i - 1][j], mustSell[i][j]); } } return globalBest[n - 1][k]; } }