You are given the root
node of a binary search tree (BST) and a value
to insert into the tree. Return the root node of the BST after the insertion. It is guaranteed that the new value does not exist in the original BST.
Notice that there may exist multiple valid ways for the insertion, as long as the tree remains a BST after insertion. You can return any of them.
Example 1:
Input: root = [4,2,7,1,3], val = 5 Output: [4,2,7,1,3,5] Explanation: Another accepted tree is:
Example 2:
Input: root = [40,20,60,10,30,50,70], val = 25 Output: [40,20,60,10,30,50,70,null,null,25]
Example 3:
Input: root = [4,2,7,1,3,null,null,null,null,null,null], val = 5 Output: [4,2,7,1,3,5]
Constraints:
- The number of nodes in the tree will be in the range
[0, 104]
. -108 <= Node.val <= 108
- All the values
Node.val
are unique. -108 <= val <= 108
- It's guaranteed that
val
does not exist in the original BST.
M1: recursion, time = O(height), space = O(height) call stack
class Solution { public TreeNode insertIntoBST(TreeNode root, int val) { TreeNode node = new TreeNode(val); if(root == null) { return node; } if(root.val < val) { root.right = insertIntoBST(root.right, val); } else { root.left = insertIntoBST(root.left, val); } return root; } }
M2: iterative, time = O(height), space = O(1)
class Solution { public TreeNode insertIntoBST(TreeNode root, int val) { TreeNode cur = root; while(cur != null) { if(val > cur.val) { // insert into right subtree if(cur.right == null) { cur.right = new TreeNode(val); return root; } else { cur = cur.right; } } else { // insert into left subtree if(cur.left == null) { cur.left = new TreeNode(val); return root; } else { cur = cur.left; } } } return new TreeNode(val); } }