Given a binary tree, you need to compute the length of the diameter of the tree. The diameter of a binary tree is the length of the longest path between any two nodes in a tree. This path may or may not pass through the root.
Example:
Given a binary tree
1 / 2 3 / 4 5
Return 3, which is the length of the path [4,2,1,3] or [5,2,1,3].
Note: The length of path between two nodes is represented by the number of edges between them.
time: O(n^2) -- worst case, space: O(n)
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public int diameterOfBinaryTree(TreeNode root) { if(root == null) { return 0; } int d = depth(root.left) + depth(root.right); int left = diameterOfBinaryTree(root.left); int right = diameterOfBinaryTree(root.right); return Math.max(d, Math.max(left, right)); } public int depth(TreeNode node) { if(node == null) { return 0; } return 1 + Math.max(depth(node.left), depth(node.right)); } }
optimized:
time: O(n) -- post order traverse, visited each node once,
space: O(height)
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { int max = 1; public int diameterOfBinaryTree(TreeNode root) { maxDiamter(root); return max - 1; } public int maxDiamter(TreeNode node) { if (node == null) { return 0; } int left = maxDiamter(node.left); int right = maxDiamter(node.right); max = Math.max(max, left + right + 1); return 1 + Math.max(left, right); } }