Given an array nums
of n integers where n > 1, return an array output
such that output[i]
is equal to the product of all the elements of nums
except nums[i]
.
Example:
Input:[1,2,3,4]
Output:[24,12,8,6]
Note: Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
(类似)dp
每一个元素的对应值 等于 它左边所有元素的乘积 * 它右边所有元素的乘积
用res[i]表示每一个元素对应值。元素nums[i]左边所有元素的乘积是left[i-1] * nums[i-1],第一个元素左边没有元素,即乘积为1,left[0] = 1,遍历一遍得到元素左边所有元素的乘积。同样,元素nums[i]右边所有元素的乘积是right[i+1] * nums[i+1],最后一个元素右边没有元素,即乘积为1,right[nums.length-1] = 1。最后再把left[i] * right[i] 得到res[i]
time: O(n), space: O(n)
class Solution { public int[] productExceptSelf(int[] nums) { if(nums == null || nums.length == 0) return nums; int[] left = new int[nums.length]; int[] right = new int[nums.length]; int[] res = new int[nums.length]; left[0] = 1; for(int i = 1; i < nums.length; i++) { left[i] = left[i-1] * nums[i-1]; } right[nums.length - 1] = 1; for(int i = nums.length - 2; i >= 0; i--) { right[i] = right[i+1] * nums[i+1]; } for(int i = 0; i < nums.length; i++) { res[i] = left[i] * right[i]; } return res; } }
优化:只用一个res array, space complexity O(1)
class Solution { public int[] productExceptSelf(int[] nums) { if(nums == null || nums.length == 0) return nums; int[] res = new int[nums.length]; res[0] = 1; for(int i = 1; i < nums.length; i++) { res[i] = res[i-1] * nums[i-1]; } int right = 1; for(int i = nums.length - 1; i >= 0; i--) { res[i] *= right; right *= nums[i]; } return res; } }