• Disruptor


    标签

    无锁,环形buffer,高并发,消费者生产者模式

    介绍

    主页:http://lmax-exchange.github.io/disruptor/

    源码:https://github.com/LMAX-Exchange/disruptor

    GettingStarted: https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started

    api: http://lmax-exchange.github.io/disruptor/docs/index.html

    maven: https://mvnrepository.com/artifact/com.lmax/disruptor

    Disruptor的特点

    对比ConcurrentLinkedQueue : 链表实现

    JDK中没有ConcurrentArrayQueue

    Disruptor是数组实现的

    无锁,高并发,使用环形Buffer,直接覆盖(不用清除)旧的数据,降低GC频率

    实现了基于事件的生产者消费者模式(观察者模式)

    RingBuffer

    环形队列

    RingBuffer的序号,指向下一个可用的元素

    采用数组实现,没有首尾指针

    对比ConcurrentLinkedQueue,用数组实现的速度更快

    假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定

    当Buffer被填满的时候到底是覆盖还是等待,由Producer决定

    长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1) pos = num & (size -1)

    Disruptor开发步骤

    1. 定义Event - 队列中需要处理的元素

    2. 定义Event工厂,用于填充队列

      这里牵扯到效率问题:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配

      GC产频率会降低

    3. 定义EventHandler(消费者),处理容器中的元素

    事件发布模板

    long sequence = ringBuffer.next();  // Grab the next sequence
    try {
        LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor
        // for the sequence
        event.set(8888L);  // Fill with data
    } finally {
        ringBuffer.publish(sequence);
    }
    

    使用EventTranslator发布事件

    //===============================================================
            EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {
                @Override
                public void translateTo(LongEvent event, long sequence) {
                    event.set(8888L);
                }
            };
    
            ringBuffer.publishEvent(translator1);
    
            //===============================================================
            EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {
                @Override
                public void translateTo(LongEvent event, long sequence, Long l) {
                    event.set(l);
                }
            };
    
            ringBuffer.publishEvent(translator2, 7777L);
    
            //===============================================================
            EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {
                @Override
                public void translateTo(LongEvent event, long sequence, Long l1, Long l2) {
                    event.set(l1 + l2);
                }
            };
    
            ringBuffer.publishEvent(translator3, 10000L, 10000L);
    
            //===============================================================
            EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {
                @Override
                public void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {
                    event.set(l1 + l2 + l3);
                }
            };
    
            ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);
    
            //===============================================================
            EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {
    
                @Override
                public void translateTo(LongEvent event, long sequence, Object... objects) {
                    long result = 0;
                    for(Object o : objects) {
                        long l = (Long)o;
                        result += l;
                    }
                    event.set(result);
                }
            };
    
            ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);
    

    使用Lamda表达式

    package com.mashibing.disruptor;
    
    import com.lmax.disruptor.RingBuffer;
    import com.lmax.disruptor.dsl.Disruptor;
    import com.lmax.disruptor.util.DaemonThreadFactory;
    
    public class Main03
    {
        public static void main(String[] args) throws Exception
        {
            // Specify the size of the ring buffer, must be power of 2.
            int bufferSize = 1024;
    
            // Construct the Disruptor
            Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);
    
            // Connect the handler
            disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));
    
            // Start the Disruptor, starts all threads running
            disruptor.start();
    
            // Get the ring buffer from the Disruptor to be used for publishing.
            RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
    
    
            ringBuffer.publishEvent((event, sequence) -> event.set(10000L));
    
            System.in.read();
        }
    }
    

    ProducerType生产者线程模式

    ProducerType有两种模式 Producer.MULTI和Producer.SINGLE

    默认是MULTI,表示在多线程模式下产生sequence

    如果确认是单线程生产者,那么可以指定SINGLE,效率会提升

    如果是多个生产者(多线程),但模式指定为SINGLE,会出什么问题呢?

    等待策略

    1,(常用)BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费。

    2,BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu

    3,LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet,如果两个线程同时访问一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数.

    4,LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常。

    5,PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略

    6,TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常

    7,(常用)YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu

    1. (常用)SleepingWaitStrategy : sleep

    消费者异常处理

    默认:disruptor.setDefaultExceptionHandler()

    覆盖:disruptor.handleExceptionFor().with()

  • 相关阅读:
    qt 问题及处理
    windows 依赖查看
    java基础知识
    Linux 相关
    OutLook中添加Exchange失败问题
    开源协议简介
    grail开发环境的搭建
    node+mongodb+WP构建的移动社交应用源码 分享
    INotifyPropertyChanged接口的详细说明
    WP8.1开发:后台任务详解(求推荐)
  • 原文地址:https://www.cnblogs.com/farmersun/p/12686820.html
Copyright © 2020-2023  润新知