• 使用Tensorflow和MNIST识别自己手写的数字


    #!/usr/bin/env python3
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    
    import tensorflow as tf
    
    sess = tf.InteractiveSession()
    
    
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder(tf.float32, shape=[None, 10])
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    
    sess.run(tf.global_variables_initializer())
    
    y = tf.matmul(x,W) + b
    
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
    
    train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
    
    for _ in range(1000):
      batch = mnist.train.next_batch(100)
      train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)
      return tf.Variable(initial)
    
    def bias_variable(shape):
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    x_image = tf.reshape(x, [-1,28,28,1])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    keep_prob = tf.placeholder(tf.float32)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
    cross_entropy = tf.reduce_mean(
        tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    
    saver = tf.train.Saver()  # defaults to saving all variables
    
    sess.run(tf.global_variables_initializer())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    saver.save(sess, 'fanlinglong/model.ckpt')
    
    print("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    
  • 相关阅读:
    Vue练习三十六:05_01_模拟select控件
    Vue练习三十五:04_09_星级评分系统
    Vue练习三十四:04_07_各种数组方法练习
    Vue练习三十三:04_06_当前输入框高亮显示
    Vue练习三十二:04_05_设置读取属性
    【CC++笔记】指针输出字符串
    【CC++笔记】数组指针越界
    【算法】递归思想
    【学习方法】堕落大学生补救方法
    【数字逻辑】补码技巧
  • 原文地址:https://www.cnblogs.com/fanlinglong/p/8087222.html
Copyright © 2020-2023  润新知