• tensorflow---alexnet training (tflearn)


    # 输入数据
    import input_data
    mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
    
    import tensorflow as tf
    
    # 定义网络超参数
    learning_rate = 0.001
    training_iters = 200000
    batch_size = 64
    display_step = 20
    
    # 定义网络参数
    n_input = 784 # 输入的维度
    n_classes = 10 # 标签的维度
    dropout = 0.8 # Dropout 的概率
    
    # 占位符输入
    x = tf.placeholder(tf.types.float32, [None, n_input])
    y = tf.placeholder(tf.types.float32, [None, n_classes])
    keep_prob = tf.placeholder(tf.types.float32)
    
    # 卷积操作
    def conv2d(name, l_input, w, b):
        return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
    
    # 最大下采样操作
    def max_pool(name, l_input, k):
        return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
    
    # 归一化操作
    def norm(name, l_input, lsize=4):
        return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
    
    # 定义整个网络 
    def alex_net(_X, _weights, _biases, _dropout):
        # 向量转为矩阵
        _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
    
        # 卷积层
        conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
        # 下采样层
        pool1 = max_pool('pool1', conv1, k=2)
        # 归一化层
        norm1 = norm('norm1', pool1, lsize=4)
        # Dropout
        norm1 = tf.nn.dropout(norm1, _dropout)
    
        # 卷积
        conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
        # 下采样
        pool2 = max_pool('pool2', conv2, k=2)
        # 归一化
        norm2 = norm('norm2', pool2, lsize=4)
        # Dropout
        norm2 = tf.nn.dropout(norm2, _dropout)
    
        # 卷积
        conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
        # 下采样
        pool3 = max_pool('pool3', conv3, k=2)
        # 归一化
        norm3 = norm('norm3', pool3, lsize=4)
        # Dropout
        norm3 = tf.nn.dropout(norm3, _dropout)
    
        # 全连接层,先把特征图转为向量
        dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) 
        dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') 
        # 全连接层
        dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
    
        # 网络输出层
        out = tf.matmul(dense2, _weights['out']) + _biases['out']
        return out
    
    # 存储所有的网络参数
    weights = {
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
        'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
        'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
        'wd2': tf.Variable(tf.random_normal([1024, 1024])),
        'out': tf.Variable(tf.random_normal([1024, 10]))
    }
    biases = {
        'bc1': tf.Variable(tf.random_normal([64])),
        'bc2': tf.Variable(tf.random_normal([128])),
        'bc3': tf.Variable(tf.random_normal([256])),
        'bd1': tf.Variable(tf.random_normal([1024])),
        'bd2': tf.Variable(tf.random_normal([1024])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    # 构建模型
    pred = alex_net(x, weights, biases, keep_prob)
    
    # 定义损失函数和学习步骤
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # 测试网络
    correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # 初始化所有的共享变量
    init = tf.initialize_all_variables()
    
    # 开启一个训练
    with tf.Session() as sess:
        sess.run(init)
        step = 1
        # Keep training until reach max iterations
        while step * batch_size < training_iters:
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            # 获取批数据
            sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
            if step % display_step == 0:
                # 计算精度
                acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
                # 计算损失值
                loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
                print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
            step += 1
        print "Optimization Finished!"
        # 计算测试精度
        print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
    

      

    tensorflow 是强大的分布式跨平台深度学习框架

    keras,TensorLayer,Tflearn 都是基于tensorflow 开发的库(提供傻瓜式编程)

    知识点: 

    from __future__ import print_function   : 为了老版本的python 兼顾新特性 (from __future import *)

  • 相关阅读:
    angular2.0学习笔记4.npm常用指令记录及angular语法
    angular2.0学习笔记7.echarts 地图(type:'map')slice undifined 出错问题
    angular2.0学习笔记6.编程风格指南
    ionic3搭建笔记及编译成apk
    Ionic3--数据存储
    webpack入门笔记
    angular2.0学习笔记3.了解angular2.0项目结构
    angular2.0学习笔记2.创建hello world项目
    UVA 10954 Add All
    POJ 3069 Saruman's Army
  • 原文地址:https://www.cnblogs.com/fanhaha/p/7645326.html
Copyright © 2020-2023  润新知