1. 首先 Numpy: Numpy是Python的科学计算库,提供矩阵运算. 想想list已经提供了矩阵的形式,为啥要用Numpy,因为numpy提供了更多的函数。 使用numpy,首先要导入numpy: import numpy as np 使用numpy创建数组以list 或tuple作为参数: np.array([1,2,3,4]) np.array((1.2,2,3,4)) 使用numpy可以指定数据类型: numpy.int32, numpy.int16, numpy.float64 np.array((1,2,3,4),dtype=np.int32) 使用numpy.arange方法: np.arange(10) [0 1 2 3 4 5 6 7 8 9 ] np.arange(10).reshape(2,5) [[0 1 2 3 4 ][5 6 7 8 9]] 使用numpy.linspace方法:np.linspace(1,3,9) 在1到3之间产生9个数[1. 1.25. 1.5. 1.75. 2. 2.25. 2.5. 2.75. 3.] 还可以使用 numpy.zeros, numpy.ones, numpy.eye 等方法 查询属性: .ndim 维数, .shape 大小, dtype 元素类型、、、 操作: sum, a.sum(), a.sum(axis=0) 计算每一列的和, min, a.min(), a.max(), np.sin(a), np.floor(a), np.exp(a) 合并: np.vstack((a,b)) 竖拼 np.hstack((a,b)) 横拼 数组索引 索引数组中的一个值: a[1,2] 索引数组中的一行: a[1,:] 索引数组中的一个范围:a[1,1:3] scipy: 包括统计,优化,整合,线性代数。。。
scikit-learn: 机器学习 matplotlib: 绘图系统
import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random # Parameters learning_rate = 0.01 training_epochs = 2000 display_step = 50 # Training Data train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0] # tf Graph Input X = tf.placeholder("float") Y = tf.placeholder("float") # Create Model # Set model weights W = tf.Variable(rng.randn(), name="weight") b = tf.Variable(rng.randn(), name="bias") # Construct a linear model activation = tf.add(tf.mul(X, W), b) # Minimize the squared errors cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # Initializing the variables init = tf.initialize_all_variables() # Launch the graph with tf.Session() as sess: sess.run(init) # Fit all training data for epoch in range(training_epochs): for (x, y) in zip(train_X, train_Y): sess.run(optimizer, feed_dict={X: x, Y: y}) #Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), "W=", sess.run(W), "b=", sess.run(b) print "Optimization Finished!" print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b) #Graphic display plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()
输出: