from sklearn.datasets import load_sample_image from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np china = load_sample_image("china.jpg") plt.imshow(china) plt.show()
image = china[::3,::3] #降低分辨率 X = image.reshape(-1,3) print(china.shape,image.shape,X.shape)
x=image.reshape(-1,3) #重造数组 n_colors = 64 #(256,256,256) model = KMeans(n_colors) labels = model.fit_predict(X) #每个点的颜色分类,0-63 colors = model.cluster_centers_ #64个聚类中心,颜色值 new_image=colors[labels]#进行颜色填充 new_image=image.reshape(143,214,3) new_image=new_image.reshape(image.shape) #还原原来的数组
plt.imshow(image); plt.show() plt.imshow(new_image.astype(np.uint8) )#转换为数据类型 plt.show()
#查看图片大小 import sys print(sys.getsizeof(china)) #原图片 print(sys.getsizeof(new_image)) #新图片
#将原始图片与新图片保存成文件,观察文件的大小。
import matplotlib.image as img img.imsave('img.jpg',china) img.imsave('new_image.jpg',new_image)