• 聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用


    4

    用python实现K均值算法

    x=np.random.randint(1,100,[20,1])
    y=np.zeros(20)
    k=3
    def initcenter(x,k):
        return x[:k]
        
    def nearest(kc,i):
        d = (abs(kc - i))
        w = np.where(d ==np.min(d))
        return w [0] [0]
    
    kc = initcenter(x,k)
    nearest(kc,14)

    for i in range(x.shape[0]):
        print(nearest(kc,x[i]))

    运行结果为:

    for i in range(x.shape[0]):
        y[i] = nearest(kc,x[i])
    print(y)

    运行结果为:

    for i in range(x.shape[0]):
        y[i]=nearest(kc,x[i])
    print(y)

    运行结果为:

    def initcenter(x,k):
        return x[:k]
    
    def nearest(kc, i):
        d = (abs(kc - 1))
        w= np.where(d == np.min(d))
        return w[0][0]
    
    def xclassify(x,y,kc):
        for i in range(x.shape[0]):
            y[i] = nearest(kc,x[i])
            return y
        
    
    
    kc = initcenter(x,k)
    nearest(kc,93)
    m  = np.where(y == 0)
    np.mean(x[m])

    kc[0]=24
    flag = True
    import numpy as np
    from sklearn.datasets import load_iris
    iris = load_iris()
    x = iris.data[:,1]
    y = np.zeros(150)
    
    
    def nearest(kc,i):  #初始聚类中心数组
      return x[0:k]
    
    def  nearest(kc,i):  #数组中的值,与聚类中心最小距离所在类别的索引号
        d = (abs(kc - i))
        w = np.where(d == np.min(d))
        return w[0][0]
    
    def kcmean(x, y, kc, k):  #计算各聚类新均值
        l =list(kc)
        flag = False
        for c in range(k):
            m = np.where(y == c)
            if m[0].shape != (0,):
                n = np.mean(x[m])
                if l[c] != n:
                    l[c] = n
                    flag = True #聚类中心发生改变
                    return (np.array(1),flag)
                
    def xclassify(x,y,kc):
        for i in range(x.shape[0]): #对数组的每个值分类
            y[i] = nearest(kc,x[i])
        return y
    
    k = 3
    kc = initcenter(x,k)
    
    falg = True
    print(x, y, kc, flag)
    while flag:
        y = xclassify(x, y, kc)
        xc, flag = kcmean(x, y, kc, k)
        
    print(y,kc)

    运行结果为:

    import matplotlib.pyplot as plt
    plt.scatter(x, x, c=y, s=50, cmap='rainbow',marker='p',alpha=0.5);
    plt.show()

    运行结果为:

    鸢尾花花瓣长度数据做聚类并用散点图显示。

    import numpy as np
    from sklearn.datasets import load_iris    
    iris = load_iris()
    x = iris.data[:,1]
    y = np.zeros(150)
    
    def initcenter(x,k):    #初始聚类中心数组
        return x[0:k].reshape(k)
    
    def nearest(kc,i):       #数组中的值,与聚类中心最小距离所在类别的索引号
        d = (abs(kc-i))
        w = np.where(d == np.min(d))
        return w[0][0]
    
    def xclassify(x,y,kc):
        for i in range(x.shape[0]):       #对数组的每个值进行分类,shape[0]读取矩阵第一维度的长度
            y[i] = nearest(kc,x[i])
        return y
    
    def kcmean(x,y,kc,k):     #计算各聚类新均值
        l = list(kc)
        flag = False
        for c in range(k):
            print(c)
            m = np.where(y == c)
            n=np.mean(x[m])
            if l[c] != n:
                l[c] = n
                flag = True     #聚类中心发生变化
                print(l,flag)
        return (np.array(l),flag)
    
    
    k = 3
    kc = initcenter(x,k)
    
    flag = True
    print(x,y,kc,flag)
    
    #判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2
    while flag:
        y = xclassify(x,y,kc)
        kc, flag = kcmean(x,y,kc,k)
        print(y,kc,type(kc))
        
    print(x,y)
    import matplotlib.pyplot as plt
    plt.scatter(x,x,c=y,s=50,cmap="rainbow");
    plt.show()

    运行结果为:

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris
     
    iris = load_iris()
    X=iris.data
    X

     用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示.

    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets import load_iris
     
    iris = load_iris()
    X=iris.data
    X
    
    from sklearn.cluster import KMeans
    
    est = KMeans(n_clusters=3)
    est.fit(X)
    kc = est.cluster_centers_
    y_kmeans = est.predict(X)   #预测每个样本的聚类索引
    
    print(y_kmeans,kc)
    print(kc.shape,y_kmeans.shape,X.shape)
    
    plt.scatter(X[:,0],X[:,1],c=y_kmeans, s=50, cmap='rainbow');
    plt.show()

    运行结果为

     鸢尾花完整数据做聚类并用散点图显示.

    from sklearn.cluster import KMeans
    import numpy as np
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt
    data = load_iris()
    iris = data.data
    petal_len = iris
    print(petal_len)
    k_means = KMeans(n_clusters=3) #三个聚类中心
    result = k_means.fit(petal_len) #Kmeans自动分类
    kc = result.cluster_centers_ #自动分类后的聚类中心
    y_means = k_means.predict(petal_len) #预测Y值
    plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means, marker='p',cmap='rainbow')
    plt.show()

    运行结果为:

  • 相关阅读:
    Docker swarm集群增加节点和删除节点
    docker 基础
    Mac 下 java环境 maven环境配置
    git 常用命令(含删除文件) git提交本地分支到远程分支
    github添加ssh keys
    Git在mac中和远程仓库建立连接
    初始化Git仓库(Mac环境下)
    Mac系统显示隐藏文件
    Mac:jenkins忘记管理员账号登录密码如何修改管理员账号
    java实现链表的反转
  • 原文地址:https://www.cnblogs.com/fanfanfan/p/9862233.html
Copyright © 2020-2023  润新知