runxinzhi.com
首页
百度搜索
慕课网Servlet购物车学习记录
Servlet购物车学习
项目简介:使用Servlet+jsp实现整个页面和后台逻辑,加上自己把慕课的mysql改成sql的数据库连接。体现了mvc思想。
使用工具:myeclipse
项目文件地址:
https://pan.baidu.com/s/1xf290vwHcgRmtbkWU3QJ4Q 密码:jgal
学习难点:
1、显示商品的数据库连接和逻辑实现。
2、为了使hashmap集合不能添加重复的对象,需要重写hashCode和equals 方法。这里了解hashmap的组成原理是最好的。
3、cookie的使用方法。坑:cookie的id截取不能使用特殊字符。。项目中把”,”改成”#”。具体:
http://blog.csdn.net/qq_32953185/article/details/67634744
4、response.setContentType(“text/html;charset=utf-8”);导致success.jsp中文显示为??的奇怪问题,曾经用response.setCharacterEncoding(“UTF-8”);修复好过。后来不存在。。。
5、该项目在有些旧版本(具体不明)的火狐、Chrome浏览器下,会导致Servlet的dopost方法执行两次,导致购物车的商品数量和总金额会翻一倍。解决办法:浏览器更新到最新版本(2018-03-07)。
ps:记得导入sql驱动包而且要放置在webRoot>web-inf>lib里面。。资源:
http://blog.csdn.net/qq_32953185/article/details/65631455
相关阅读:
(转)A Recipe for Training Neural Networks
(转)Extracting knowledge from knowledge graphs using Facebook Pytorch BigGraph.
论文笔记:Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering
论文笔记:Decoders Matter for Semantic Segmentation: Data-Dependent Decoding Enables Flexible Feature Aggregation
论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
论文笔记:Prediction-Tracking-Segmentation
论文笔记:SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks
(转)AutoML for Data Augmentation
(转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS
(转)The Evolved Transformer
原文地址:https://www.cnblogs.com/famine/p/9124728.html
最新文章
OSSFS将OSS bucket 挂载到本地文件系统及注意事项
quartz集群报错but has failed to stop it. This is very likely to create a memory leak.
【转】Intellij IDEA 14中使用MyBatis-generator 自动生成MyBatis代码
spring mvc redis消息队列
Spring基础知识
Spring PropertyPlaceholderConfigurer数据库配置
spring quartz分布式任务计划
spring jpa 实体互相引用返回restful数据循环引用报错的问题
【转】Spring mvc集成ZBUS--轻量级MQ、RPC、服务总线
Learning Context Graph for Person Search
热门文章
Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-identification
Empirical Analysis of Beam Search Performance Degradation in Neural Sequence Models
Dynamic Filter Networks
Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks
Learning Conditioned Graph Structures for Interpretable Visual Question Answering
Spatial-Temporal Relation Networks for Multi-Object Tracking
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression
End-To-End Memory Networks
(转)AutoML 与轻量模型大列表: awesome-AutoML-and-Lightweight-Models
(转)RL — Policy Gradient Explained
Copyright © 2020-2023
润新知