自适应阈值化的函数为:
AdaptiveThreshold
自适应阈值方法
void cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, int adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, int threshold_type=CV_THRESH_BINARY, int block_size=3, double param1=5 );
- src
- 输入图像.
- dst
- 输出图像.
- max_value
- 使用 CV_THRESH_BINARY 和 CV_THRESH_BINARY_INV 的最大值.
- adaptive_method
- 自适应阈值算法使用:CV_ADAPTIVE_THRESH_MEAN_C 或 CV_ADAPTIVE_THRESH_GAUSSIAN_C (见讨论).
- threshold_type
- 取阈值类型:必须是下者之一
- CV_THRESH_BINARY,
- CV_THRESH_BINARY_INV
- block_size
- 用来计算阈值的象素邻域大小: 3, 5, 7, ...
- param1
- 与方法有关的参数。对方法 CV_ADAPTIVE_THRESH_MEAN_C 和 CV_ADAPTIVE_THRESH_GAUSSIAN_C, 它是一个从均值或加权均值提取的常数(见讨论), 尽管它可以是负数。
函数 cvAdaptiveThreshold 将灰度图像变换到二值图像,采用下面公式:
threshold_type=CV_THRESH_BINARY: dst(x,y) = max_value, if src(x,y)>T(x,y) 0, otherwise threshold_type=CV_THRESH_BINARY_INV: dst(x,y) = 0, if src(x,y)>T(x,y) max_value, otherwise
其中 TI 是为每一个象素点单独计算的阈值
对方法 CV_ADAPTIVE_THRESH_MEAN_C,先求出块中的均值,再减掉param1。
对方法 CV_ADAPTIVE_THRESH_GAUSSIAN_C ,先求出块中的加权和(gaussian), 再减掉param1。
================================================================================================================
下面的例题对阈值化和自适应阈值化进行了比较:
- #include "StdAfx.h"
- #include <cv.h>
- #include <highgui.h>
- #include <math.h>
- IplImage* Igray = 0;
- IplImage* It = 0;
- IplImage* Iat;
- void main()
- {
- Igray = cvLoadImage("lena.png", CV_LOAD_IMAGE_GRAYSCALE);
- It = cvCreateImage(cvSize(Igray->width, Igray->height),IPL_DEPTH_8U, 1);
- Iat = cvCreateImage(cvSize(Igray->width, Igray->height),IPL_DEPTH_8U, 1);
- cvThreshold(Igray, It, 150, 255,CV_THRESH_BINARY);
- cvAdaptiveThreshold(Igray, Iat, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY, 3, 5);
- cvNamedWindow("orignal", 1);
- cvNamedWindow("threshold", 1);
- cvNamedWindow("adaptiveThresh", 1);
- cvShowImage("orignal", Igray);
- cvShowImage("threshold", It);
- cvShowImage("adaptiveThresh", Iat);
- cvWaitKey(0);
- cvReleaseImage(&Igray);
- cvReleaseImage(&It);
- cvReleaseImage(&Iat);
- cvDestroyWindow("orignal");
- cvDestroyWindow("threshold");
- cvDestroyWindow("adaptiveThresh");
- }
运算结果为:
参考文献:
1.学习OpenCV,于仕祺,刘瑞祯,清华大学出版社,pp.159-161
2.http://blog.csdn.net/cartoonface/article/details/6011334
3.http://www.opencv.org.cn/index.php/Cv%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86#AdaptiveThreshold
转自:http://blog.csdn.net/superdont/article/details/6661994