• [agc006_f] Blackout


    Description

    ​ 给你一个(N *N)的网格,初始(M)个格子((a_i,b_i))被涂成黑色,其余为白色。每次可以将一些格子涂成黑色,规则如下如果存在三个格子((x,y),(y,z),(z,x))满足((x,y),(y,z))均为黑色,且((z,x))为白色,那么我们可以把((z,x))涂成黑色。输出不能继续操作时,黑格子的最大数量。

    Hint

    (1<=N,M<=10^5,1<=a_i,b_i<=N),并且所有的((a_i,b_i))互不相同。

    Solution

    ​ 先转化模型,将网格变成邻接矩阵,于是题目转化为:有一个有向图,如果x->y,y->z,加上z->x。重复该过程直到不能再添加。求最终图中有多少边。

    ​ 首先,各个弱联通块之间互不影响,所以,每个弱联通块单独考虑。手玩一下发现

    1、一条长度为2的链会构成一个三元环。

    2、如果出现二元环,一定会出现自环

    3、所有连向有自环的点的点,会出现自环

    4、一旦出现二元环或者自环原弱联通块会变成完全图

    ​ 那么,我们考虑如何判断该联通块会不会出现二元环,或者自环。那么我们将弱联通块三染色,分类讨论:

    1、染色失败,如果每种颜色都出现过,说明出现了二元环或者自环,原图最终一定是一个完全图;如果,只出现了一种或者两种颜色,说明无法增加新的边。

    2、染色成功,则弱联通块的答案为,染色为0的点连向染色为1的点,染色为1的点连向染色为2的点,染色为2的点连向染色为0的点。

    ​ 分类统计答案即可。

    Code

    #include<algorithm>
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    using namespace std;
    typedef long long ll;
    const int maxn = 100000 + 10;
     
    int n, m, ecnt, h[maxn], col[maxn];
    ll cnt[5];
    struct enode{
      int v, n, w;
      enode() {}
      enode(int _v, int _n, int _w):v(_v), n(_n), w(_w) {}
    }e[maxn << 1];
     
    inline void addedge(int u, int v, int w) {
      ecnt ++; e[ecnt] = enode(v,h[u],w); h[u] = ecnt;
    }
     
    int flag = 0;
    void dfs(int u) {
      cnt[col[u]] ++;
      for(int i = h[u];~ i;i = e[i].n) {
        if(e[i].w == 1) cnt[3] ++;
        int v = e[i].v, tmp = (col[u] + e[i].w) % 3;
        if(col[v] == -1) {
          col[v] = tmp;
          dfs(v);
        }
        else if(col[v] != tmp) flag = 1;
      }
    }
     
    int main() {
      scanf("%d%d", &n, &m); ecnt = 0;
      memset(h,-1,sizeof(h));
      for(int i = 1;i <= m;i ++) {
        int u, v;
        scanf("%d%d", &u, &v);
        addedge(u,v,1);
        addedge(v,u,2);
      }
      ll ans = 0;
      memset(col,-1,sizeof(col));
      for(int i = 1;i <= n;i ++) {
        if(~ col[i]) continue;
        cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;
        col[i] = 0;
        flag = 0;
        dfs(i);
        if(flag) {
          ll tmp = cnt[0] + cnt[1] + cnt[2];
          ans = ans + 1LL * tmp * tmp;
          continue;
        }
        if(cnt[0] && cnt[1] && cnt[2]) {
          ans = ans + cnt[0] * cnt[1] + cnt[1] * cnt[2] + cnt[2] * cnt[0];
          continue;
        }
        ans = ans + cnt[3];
      }
      printf("%lld
    ", ans);
      return 0;
    }
    
  • 相关阅读:
    结合P2P软件使用Ansible分发大文件
    Centos7 上安装 FastDFS
    go在centos配置以及go mod配置
    代理
    笔记本安装ubuntu18.08,解决过程中出现的各种问题
    CentOS7设置自定义开机启动脚本,添加自定义系统服务
    gitlab忘记密码找回
    zabbix配置短信报警
    将博客搬至CSDN
    RT-Thread-stm32f769-qspi-flash移植
  • 原文地址:https://www.cnblogs.com/ezhjw/p/9520115.html
Copyright © 2020-2023  润新知