Description
You are given a permutation p of the set ({1,2,...,N}). Please construct two sequences of positive integers (a_1, a_2, ..., a_N) and (b_1, b_2, ..., b_N) satisfying the following conditions:
·(1≤a_i,b_i≤10^9) for all (i)
·(a_1<a_2<...<a_N)
·(b_1>b_2>...>b_N)
·(a_{p_1}+b_{p_1}<a_{p_2}+b_{p_2}<...<a_{p_N}+b_{p_N})
Constraints
·(2≤N≤20,000)
·(p) is a permutation of the set ({1,2,...,N})
Solution
注意到a,b分别是递增和递减的,不妨先按照等差数列构造,首先保证(a_i+b_i)不变,然后再按照给如的序列p在a序列的基础上减去一个相对较小的值,保证不会改变原有的单调性,这样就改变了(a_i+b_i)的单调性
Note
第一次选值的时候选取了20000,由于太大而影响了最总的结果,这里选择N然后令其递减即可
Code
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
int p[20000 + 10];
int a[20000 + 10], b[20000 + 10];
int main() {
//freopen("test.txt", "r", stdin);
ios::sync_with_stdio(false);
cin.tie(0);
int N;
cin >> N;
for (int i = 1; i <= N; i++) cin >> p[i];
for (int i = 1; i <= N; i++) a[i] = i*20001;
for (int i = N; i >= 1; i--) b[N-i+1] = i*20001;
int base = N;
for (int i = 1; i <= N; i++) {
a[p[i]] -= base;
base--;
}
for (int i = 1; i <= N; i++) cout << a[i] << " ";
cout << endl;
for (int i = 1; i <= N; i++) cout << b[i] << " ";
return 0;
}