• WordCount单词计数


    课程链接:Hadoop大数据平台架构与实践--基础篇

    计算文件中出现每个单词的频数,输入结果按照字母顺序进行排序

    Map过程(切分,中间结果:Key-Value)

    Reduce过程(合并、归约后经过Hash,所有单词放在同一个结点)

    步骤:

    1. 编写WordCount.java,包含Mapper类和Reduce类
    2. 编译WordCount.java,javac -classpath
    3. 打包jar -cvf WordCount.jar classes/*
    4. 作业提交 hadoop jar WordCount.jar WordCount input output

     WordCount.java

    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
    
    public class WordCount {
        public static class WordCountMap extends
                Mapper<LongWritable, Text, Text, IntWritable> {
            private final IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(LongWritable key, Text value, Context context)
                    throws IOException, InterruptedException {
                String line = value.toString();
                StringTokenizer token = new StringTokenizer(line);
                while (token.hasMoreTokens()) {
                    word.set(token.nextToken());
                    context.write(word, one);
                }
            }
        }
    
        public static class WordCountReduce extends
                Reducer<Text, IntWritable, Text, IntWritable> {
            public void reduce(Text key, Iterable<IntWritable> values,
                    Context context) throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                context.write(key, new IntWritable(sum));
            }
        }
    
        public static void main(String[] args) throws Exception {
            Configuration conf = new Configuration();
            Job job = new Job(conf);
            job.setJarByClass(WordCount.class);
            job.setJobName("wordcount");
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            job.setMapperClass(WordCountMap.class);
            job.setReducerClass(WordCountReduce.class);
            job.setInputFormatClass(TextInputFormat.class);
            job.setOutputFormatClass(TextOutputFormat.class);
            FileInputFormat.addInputPath(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            job.waitForCompletion(true);
        }
    }

    案例:利用MapReduce进行排序

    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.Partitioner;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class Sort {
        public static class Map extends
                Mapper<Object, Text, IntWritable, IntWritable> {
            private static IntWritable data = new IntWritable();
            
            public void map(Object key, Text value, Context context)
                    throws IOException, InterruptedException {
                String line = value.toString();
                data.set(Integer.parseInt(line));
                context.write(data, new IntWritable(1));
            }
        }
    
        public static class Reduce extends
                Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
            private static IntWritable linenum = new IntWritable(1);
            public void reduce(IntWritable key, Iterable<IntWritable> values,
                    Context context) throws IOException, InterruptedException {
                for (IntWritable val : values) {
                    context.write(linenum, key);
                    linenum = new IntWritable(linenum.get() + 1);
                }
            }
        }
    
        public static class Partition extends Partitioner<IntWritable, IntWritable> {
    
            @Override
            public int getPartition(IntWritable key, IntWritable value,
                    int numPartitions) {
                int MaxNumber = 65223;
                int bound = MaxNumber / numPartitions + 1;
                int keynumber = key.get();
                for (int i = 0; i < numPartitions; i++) {
                    if (keynumber < bound * i && keynumber >= bound * (i - 1))
                        return i - 1;
                }
                return 0;
            }
        }
    
        /**
         * @param args
         */
    
        public static void main(String[] args) throws Exception {
            // TODO Auto-generated method stub
            Configuration conf = new Configuration();
            String[] otherArgs = new GenericOptionsParser(conf, args)
                    .getRemainingArgs();
            if (otherArgs.length != 2) {
                System.err.println("Usage WordCount <int> <out>");
                System.exit(2);
            }
            Job job = new Job(conf, "Sort");
            job.setJarByClass(Sort.class);
            job.setMapperClass(Map.class);
            job.setPartitionerClass(Partition.class);
            job.setReducerClass(Reduce.class);
            job.setOutputKeyClass(IntWritable.class);
            job.setOutputValueClass(IntWritable.class);
            FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
            FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
    }
  • 相关阅读:
    21. Merge Two Sorted Lists
    496. Next Greater Element I
    (转载)深度学习的weight initialization
    Python collections模块
    Iterables vs. Iterators vs. Generators
    (转)iPhone开发关于UDID和UUID的一些理解
    uniqueIdentifier在ios7不支持后的替代方法
    Android——列表视图 ListView(一)Arrayadapter
    Android——对话框2(日期和时间对话框)
    Android——子线程操作主线程
  • 原文地址:https://www.cnblogs.com/exciting/p/9211536.html
Copyright © 2020-2023  润新知