• tencent_3.3_rnn_poetry


    课程地址:https://cloud.tencent.com/developer/labs/lab/10295/console

    utf-8编码在做网络传输和文件保存的时候,将unicode编码转换成utf-8编码,才能更好的发挥其作用;

    当从文件中读取数据到内存中的时候,将utf-8编码转换为unicode编码,亦为良策。

    python中的字符串在内存中是用unicode进行编码的,所以在python实际编程处理时用的是unicode码

    Python2.x的默认编码是ascii,所以python2需要在前面加utf-8声明, python3不需要,因为python3全部按照unicode编码

    由于这篇教程给的腾讯云环境可能是python2,所以实际代码中加上了utf-8的声明

    这里提供一个unicode编码转换网站,如“寒”字对应的unicode码是u5bd2,符合python中代码测试的结果

    站长工具 > Unicode编码转换:http://tool.chinaz.com/tools/unicode.aspx

    简介

    数据学习

    1.获取训练数据

    腾讯云的 COS 上准备了 4 万首古诗数据,使用 wget 命令获取:
    wget http://tensorflow-1253675457.cosgz.myqcloud.com/poetry/poetry
    

    2.数据预处理

    def get_poetrys(self):

    • 去换行符,去空格符,以冒号分隔题目和诗歌正文
    • 得到诗歌正文后,再去一次空格
    • 诗歌正文(加上标点)的字数小于5或大于79将不被使用
    • 将正文中的,。替换为 |,再用 | 当分割符得到正文中的每一句unicode码
    • 每一句字数不等于0,5,7的也要丢弃,如果符合要求则将上述第二步处理后的正文保存

    def gen_poetry_vector(self):

    • 将列表中的所有汉字分隔成单个unicode码,加上空格符统一扔进set容器,之后排序可得到如下结果(前五首诗得到的排序字符集)

    • 生成词典 id_to_word
    • 生成字典 word_to_id
    • 生成lambda表达式 to_id,为了之后能应用在函数式编程中
    • 用map函数将self.poetrys中的每首诗的正文都转成对应id,没首诗一个列表,存进一个大列表
    • 返回该大列表poetry_vector,下图为前五首诗

    def next_batch(self,batch_size):

    • 取batch_size首诗的数据至batches
    • x_batch的shape为(batch_size, 诗的最大字数(包括符号)),初始化为全0的id值
    • 对x_batch进行赋值
    • 将x_batch直接拷贝给y_batch
    • 对y_batch做少许修改,以满足其是x_batch循环左移一位得来
    • 返回x_batch,y_batch

    以上三个函数汇总起来就是第一个python文件

    因为对有些python代码不太熟,我自己有一个功能调试的版本,取消print注释再修改最下方调用方法即可

    test_generate_poetry.py (测试)

    # -*- encoding: utf-8 -*-
    
    import numpy as np
    import sys
    from io import open
    reload(sys)
    sys.setdefaultencoding('utf8')
    
    class Poetry:
        def __init__(self):
            self.filename = "poetry"
            self.poetrys = self.get_poetrys()
            self.poetry_vectors, self.word_to_id, self.id_to_word = self.gen_poetry_vector()
            self.poetry_vectors_size = len(self.poetry_vectors)
            self._index_in_epoch = 0
    
        def get_poetrys(self):
            poetrys = list()
            f = open(self.filename, "r", encoding="utf-8")
            for line in f.readlines()[:50]:
                # print(line)
                _, content = line.strip('
    ').strip().split(':')
                content = content.replace(' ', '')
                # print(_, content) # title and content
                # print(len(content)) # symbols and chinese characters
                if(not content or '_' in content or '(' in content or '' in content or "" in content
                        or '' in content or '[' in content or ':' in content or ''in content):
                    continue
                if len(content) < 5 or len(content) > 79:
                    continue
                content_list = content.replace('', '|').replace('', '|').split('|')
                # print(content_list)
                flag = True
                for sentence in content_list:
                    slen = len(sentence)
                    if slen == 0:
                        continue
                    if slen != 5 and slen != 7:
                        flag = False
                        break;
                if flag:
                    poetrys.append('[' + content + ']')
            return poetrys
    
        def gen_poetry_vector(self):
            words = sorted(set(''.join(self.poetrys) + ' '))
            # print(words) #sorted unicode sets
            id_to_word = {i: w for i, w in enumerate(words)}
            word_to_id = {w: i for i, w in id_to_word.items()}
            to_id = lambda word: word_to_id.get(word)
            poetry_vectors = [list(map(to_id, poetry)) for poetry in self.poetrys]
            # print(poetry_vectors)
            return poetry_vectors, word_to_id, id_to_word
    
        def next_batch(self, batch_size):
            assert batch_size < self.poetry_vectors_size
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
            if self._index_in_epoch > self.poetry_vectors_size:
                np.random.shuffle(self.poetry_vectors)
                start = 0
                self._index_in_epoch = batch_size
            end = self._index_in_epoch
            batches = self.poetry_vectors[start:end]
            # print(map(len, batches))
            x_batch = np.full((batch_size, max(map(len, batches))), self.word_to_id[' '], np.int32)
            for row in range(batch_size):
                x_batch[row, :len(batches[row])] = batches[row]
            y_batch = np.copy(x_batch)
            y_batch[:, :-1] = x_batch[:, 1:]
            y_batch[:, -1] = x_batch[:, 0]
            return x_batch, y_batch
    
    
    p = Poetry()
    # p.next_batch(10)
    # x_batch, y_batch = p.next_batch(10)
    # print(x_batch, y_batch)
    View Code

    generate_poetry.py (标准参考)

    #-*- coding:utf-8 -*-
    import numpy as np
    from io import open
    import sys
    import collections
    reload(sys)
    sys.setdefaultencoding('utf8')
    
    class Poetry:
        def __init__(self):
            self.filename = "poetry"
            self.poetrys = self.get_poetrys()
            self.poetry_vectors,self.word_to_id,self.id_to_word = self.gen_poetry_vectors()
            self.poetry_vectors_size = len(self.poetry_vectors)
            self._index_in_epoch = 0
    
        def get_poetrys(self):
            poetrys = list()
            f = open(self.filename,"r", encoding='utf-8')
            for line in f.readlines():
                _,content = line.strip('
    ').strip().split(':')
                content = content.replace(' ','')
                #过滤含有特殊符号的唐诗
                if(not content or '_' in content or '(' in content or '' in content or "" in content
                       or '' in content or '[' in content or ':' in content or ''in content):
                    continue
                #过滤较长或较短的唐诗
                if len(content) < 5 or len(content) > 79:
                    continue
                content_list = content.replace('', '|').replace('', '|').split('|')
                flag = True
                #过滤即非五言也非七验的唐诗
                for sentence in content_list:
                    slen = len(sentence)
                    if 0 == slen:
                        continue
                    if 5 != slen and 7 != slen:
                        flag = False
                        break
                if flag:
                    #每首古诗以'['开头、']'结尾
                    poetrys.append('[' + content + ']')
            return poetrys
    
        def gen_poetry_vectors(self):
            words = sorted(set(''.join(self.poetrys) + ' '))
            #数字ID到每个字的映射
            id_to_word = {i: word for i, word in enumerate(words)}
            #每个字到数字ID的映射
            word_to_id = {v: k for k, v in id_to_word.items()}
            to_id = lambda word: word_to_id.get(word)
            #唐诗向量化
            poetry_vectors = [list(map(to_id, poetry)) for poetry in self.poetrys]
            return poetry_vectors,word_to_id,id_to_word
    
        def next_batch(self,batch_size):
            assert batch_size < self.poetry_vectors_size
            start = self._index_in_epoch
            self._index_in_epoch += batch_size
            #取完一轮数据,打乱唐诗集合,重新取数据
            if self._index_in_epoch > self.poetry_vectors_size:
                np.random.shuffle(self.poetry_vectors)
                start = 0
                self._index_in_epoch = batch_size
            end = self._index_in_epoch
            batches = self.poetry_vectors[start:end]
            x_batch = np.full((batch_size, max(map(len, batches))), self.word_to_id[' '], np.int32)
            for row in range(batch_size):
                x_batch[row,:len(batches[row])] = batches[row]
            y_batch = np.copy(x_batch)
            y_batch[:,:-1] = x_batch[:,1:]
            y_batch[:,-1] = x_batch[:, 0]
    
            return x_batch,y_batch
    View Code

    3.LSTM 模型 (建议在开始此部分之前先阅读一下参考博客21、22)

    以下两种方法相同,但建议用第一种:

    Class tf.contrib.rnn 新版

    Class tf.nn.rnn_cell

    def rnn_variable(self, rnn_size, words_size): 生成隐藏层到输出层的w,b

    def rnn_variable(self, rnn_size, words_size):  sequence_loss_by_example 基于 sparse_softmax_cross_entropy_with_logits

    def optimizer_model(self, loss, learning_rate): 梯度规约,防止梯度爆炸

    def embedding_variable(self, inputs, rnn_size, words_size): 通过inputs给出的id,返回embedding

    def create_model(self, inputs, batch_size, rnn_size, words_size, num_layers, is_training, keep_prob): 

    outputs,last_state = tf.nn.dynamic_rnn(cell,input_data,initial_state=initial_state)
    
    input_data: shape = (batch_size, time_steps, input_size)
    此处的time_steps是batch_size首诗中最长的字符数(包括符号),input_size为128,也就是rnn_size
    create_model中logits: shape = (batch_size*time_steps, word_size),这是为了计算损失函数时,第1维只需按word_size展开,反正之后会reduce_mean

    以上五个函数和起来就是第二个py文件:poetry_model.py

    #-*- coding:utf-8 -*-
    import tensorflow as tf
    
    class poetryModel:
        #定义权重和偏置项
        def rnn_variable(self,rnn_size,words_size):
            with tf.variable_scope('variable'):
                w = tf.get_variable("w", [rnn_size, words_size])
                b = tf.get_variable("b", [words_size])
            return w,b
    
        #损失函数
        def loss_model(self,words_size,targets,logits):
            targets = tf.reshape(targets,[-1])
            loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)],words_size)
            loss = tf.reduce_mean(loss)
            return loss
    
        #优化算子
        def optimizer_model(self,loss,learning_rate):
            tvars = tf.trainable_variables()
            grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), 5)
            train_op = tf.train.AdamOptimizer(learning_rate)
            optimizer = train_op.apply_gradients(zip(grads, tvars))
            return optimizer
    
        #每个字向量化
        def embedding_variable(self,inputs,rnn_size,words_size):
            with tf.variable_scope('embedding'):
                with tf.device("/cpu:0"):
                    embedding = tf.get_variable('embedding', [words_size, rnn_size])
                    input_data = tf.nn.embedding_lookup(embedding,inputs)
            return input_data
    
        #构建LSTM模型
        def create_model(self,inputs,batch_size,rnn_size,words_size,num_layers,is_training,keep_prob):
            lstm = tf.contrib.rnn.BasicLSTMCell(num_units=rnn_size,state_is_tuple=True)
            input_data = self.embedding_variable(inputs,rnn_size,words_size)
            if is_training:
                lstm = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=keep_prob)
                input_data = tf.nn.dropout(input_data,keep_prob)
            cell = tf.contrib.rnn.MultiRNNCell([lstm] * num_layers,state_is_tuple=True)
            initial_state = cell.zero_state(batch_size, tf.float32)
            outputs,last_state = tf.nn.dynamic_rnn(cell,input_data,initial_state=initial_state)
            outputs = tf.reshape(outputs,[-1, rnn_size])
            w,b = self.rnn_variable(rnn_size,words_size)
            logits = tf.matmul(outputs,w) + b
            probs = tf.nn.softmax(logits)
            return logits,probs,initial_state,last_state
    View Code

    4.训练 LSTM 模型

    需要关注的是下述输入字典需包含state,而且需要在使用next_state前先sess.run(initial_state)

    feed = {inputs:x_batch,targets:y_batch,initial_state:next_state,keep_prob:0.5}
    

    inputs: shape = (batch_size, time_steps), 每个值为int,即id

    input_data: shape = (batch_size, time_steps, rnn_size)

    outputs(1): shape = (batch_size, time_steps, rnn_size)

    outputs(2): shape = (batch_size*time_steps, rnn_size)

    logits: shape = (batch_size*time_steps, words_size)

    targets: shape = (batch_size, time_steps),每个值为int,之后内部会调用tf.one_hot()展开,在

        sequence_loss_by_example损失函数调用中,最后指明了words_size,理论上targets最后shape与logits相同

    每批次采用 50 首唐诗训练,训练 40000 次后,损失函数基本保持不变,GPU 大概需要 2 个小时左右。当然你可以调整循环次数,节省训练时间,亦或者直接下载我们训练好的模型。

    wget http://tensorflow-1253675457.cosgz.myqcloud.com/poetry/poetry_model.zip
    unzip poetry_model.zip
    

    train_poetry.py

    #-*- coding:utf-8 -*-
    from generate_poetry import Poetry
    from poetry_model import poetryModel
    import tensorflow as tf
    import numpy as np
    
    if __name__ == '__main__':
        batch_size = 50
        epoch = 20
        rnn_size = 128
        num_layers = 2
        poetrys = Poetry()
        words_size = len(poetrys.word_to_id)
        inputs = tf.placeholder(tf.int32, [batch_size, None])
        targets = tf.placeholder(tf.int32, [batch_size, None])
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        model = poetryModel()
        logits,probs,initial_state,last_state = model.create_model(inputs,batch_size,
                                                                   rnn_size,words_size,num_layers,True,keep_prob)
        loss = model.loss_model(words_size,targets,logits)
        learning_rate = tf.Variable(0.0, trainable=False)
        optimizer = model.optimizer_model(loss,learning_rate)
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            sess.run(tf.assign(learning_rate, 0.002 * 0.97 ))
            next_state = sess.run(initial_state)
            step = 0
            while True:
                x_batch,y_batch = poetrys.next_batch(batch_size)
                feed = {inputs:x_batch,targets:y_batch,initial_state:next_state,keep_prob:0.5}
                train_loss, _ ,next_state = sess.run([loss,optimizer,last_state], feed_dict=feed)
                print("step:%d loss:%f" % (step,train_loss))
                if step > 40000:
                    break
                if step%1000 == 0:
                    n = step/1000
                    sess.run(tf.assign(learning_rate, 0.002 * (0.97 ** n)))
                step += 1
            saver.save(sess,"poetry_model.ckpt")
    View Code

    生成古诗

    根据 [ 随机取一个汉字,作为生成古诗的第一个字,遇到 ] 结束生成古诗。

    predict_poetry.py

    def to_word(prob): prob是tf.nn.softmax处理后归一化的多维数组,先取出prob[0](此处batch_size=1,time_steps=1(每次输出一个字符)),此时shape=[words_size]

            将其排序后,取概率值最高的值判断是否大于0.9,是则直接取该值对应的字符,否则向后一个随机数取一个较大概率值的字符输出

    #-*- coding:utf-8 -*-
    from generate_poetry import Poetry
    from poetry_model import poetryModel
    from operator import itemgetter
    import tensorflow as tf
    import numpy as np
    import random
    
    
    if __name__ == '__main__':
        batch_size = 1
        rnn_size = 128
        num_layers = 2
        poetrys = Poetry()
        words_size = len(poetrys.word_to_id)
    
        def to_word(prob):
            prob = prob[0]
            indexs, _ = zip(*sorted(enumerate(prob), key=itemgetter(1)))
            rand_num = int(np.random.rand(1)*10);
            index_sum = len(indexs)
            max_rate = prob[indexs[(index_sum-1)]]
            if max_rate > 0.9 :
                sample = indexs[(index_sum-1)]
            else:
                sample = indexs[(index_sum-1-rand_num)]
            return poetrys.id_to_word[sample]
    
        inputs = tf.placeholder(tf.int32, [batch_size, None])
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        model = poetryModel()
        logits,probs,initial_state,last_state = model.create_model(inputs,batch_size,
                                                                   rnn_size,words_size,num_layers,False,keep_prob)
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            saver.restore(sess,"poetry_model.ckpt")
            next_state = sess.run(initial_state)
    
            x = np.zeros((1, 1))
            x[0,0] = poetrys.word_to_id['[']
            feed = {inputs: x, initial_state: next_state, keep_prob: 1}
            predict, next_state = sess.run([probs, last_state], feed_dict=feed)
            word = to_word(predict)
            poem = ''
            while word != ']':
                poem += word
                x = np.zeros((1, 1))
                x[0, 0] = poetrys.word_to_id[word]
                feed = {inputs: x, initial_state: next_state, keep_prob: 1}
                predict, next_state = sess.run([probs, last_state], feed_dict=feed)
                word = to_word(predict)
            print poem
    View Code

    实验总结:

    本次实验是第一次接触rnn和lstm,看的比较费力,对于实验代码有两处疑点,特在此记录,供之后学习后回头解决

    1.BasicLSTMCell只指定了unit_num为每个小单元的输出维度,但没有指明time_steps时序步长,我百度并没有解决这个疑惑,

      所以此处我猜测时序步长是可以动态生成的,因为inputs里面对于时序步长取了一个最大值max(map(len, batches)),看起来比较随意

    2.另一个是next_state是如何传递给模型的,感觉initial_state不是一个显示接口,而且create_model没有被第二次调用,我猜想是tf.nn.dynamic_rnn或是tensorflow机制理解的问题

     参考博客:

    1.Python reload() 函数 python2

    2.为什么在sys.setdefaultencoding之前要写reload(sys)

    3.vim全选复制删除

    4.Python split()方法

    5.Python join()方法

    6.Python3 集合

    7.python sort与sorted使用笔记

    8.Python 字典(Dictionary) items()方法

    9.Python map() 函数

    10.unicode和utf-8编码

    11.浅谈unicode编码和utf-8编码的关系

    12.TensorFlow函数:tf.ones_like

    13.Python zip() 函数  打包成元组组成的列表

    14.tensorflow中sequence_loss_by_example()函数的计算过程(结合TF的ptb构建语言模型例子)

    15.【TensorFlow】关于tf.nn.sparse_softmax_cross_entropy_with_logits()

    16.tf.nn.softmax_cross_entropy_with_logits 和 tf.contrib.legacy_seq2seq.sequence_loss_by_example 的联系与区别

    17.TensorFlow学习笔记之--[tf.clip_by_global_norm,tf.clip_by_value,tf.clip_by_norm等的区别]

    18.tensorflow—tf.gradients()简单实用教程

    19.TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析] apply_gradients 参数为元组对(梯度,被求导的变量)

    20.tf.nn.embedding_lookup()的用法 返回的tensor的维度是lk的维度+data的除了第一维后的维度拼接。

    21.完全图解RNN、RNN变体、Seq2Seq、Attention机制  入门强推

    22.TensorFlow中RNN实现的正确打开方式 入门强推 内含char RNN项目

    23.Understanding LSTM Networks 入门强推 英文lstm介绍

    24.BasicLSTMCell中num_units参数解释 必看

  • 相关阅读:
    【原创】R61509/SPFD5420A驱动调试总结
    [轉貼]程序员需要具备的基本技能
    Entity SQL 说说IN关键字
    细说可空类型 nullable
    C#值类型与引用类型之我见
    解密区域集成服务器
    序列化对象,使用的三种方式:Xml,Binary,Soap
    有时间就买点书
    hdu2680 Choose the best route
    SQLServer 函数类型简要说明
  • 原文地址:https://www.cnblogs.com/exciting/p/11419184.html
Copyright © 2020-2023  润新知