• tencent_2.3_shallow_neural_networks


    课程地址:https://cloud.tencent.com/developer/labs/lab/10298/console

    数据准备

    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/t10k-images-idx3-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/t10k-labels-idx1-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/train-images-idx3-ubyte.gz
    wget https://devlab-1251520893.cos.ap-guangzhou.myqcloud.com/train-labels-idx1-ubyte.gz

    shallow_neural_networks.py

    import numpy as np
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    def add_layer(inputs, in_size, out_size, activation_function=None):
        W = tf.Variable(tf.random_normal([in_size, out_size]))
        b = tf.Variable(tf.zeros([1, out_size]) + 0.01)
    
        Z = tf.matmul(inputs, W) + b
        if activation_function is None:
            outputs = Z
        else:
            outputs = activation_function(Z)
    
        return outputs
    
    
    if __name__ == "__main__":
    
        MNIST = input_data.read_data_sets("./", one_hot=True)
    
        learning_rate = 0.05
        batch_size = 128
        n_epochs = 10
    
        X = tf.placeholder(tf.float32, [batch_size, 784])
        Y = tf.placeholder(tf.float32, [batch_size, 10])
    
        l1 = add_layer(X, 784, 1000, activation_function=tf.nn.relu)
        prediction = add_layer(l1, 1000, 10, activation_function=None)
    
        entropy = tf.nn.softmax_cross_entropy_with_logits(labels=Y, logits=prediction)
        loss = tf.reduce_mean(entropy)
    
        optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
    
        init = tf.initialize_all_variables()
    
        with tf.Session() as sess:
            sess.run(init)
    
            n_batches = int(MNIST.train.num_examples/batch_size)
            for i in range(n_epochs):
                for j in range(n_batches):
                    X_batch, Y_batch = MNIST.train.next_batch(batch_size)
                    _, loss_ = sess.run([optimizer, loss], feed_dict={X: X_batch, Y: Y_batch})
                    if j == 0:
                        print "Loss of epochs[{0}] batch[{1}]: {2}".format(i, j, loss_)
    
            # test the model
            n_batches = int(MNIST.test.num_examples/batch_size)
            total_correct_preds = 0
            for i in range(n_batches):
                X_batch, Y_batch = MNIST.test.next_batch(batch_size)
                preds = sess.run(prediction, feed_dict={X: X_batch, Y: Y_batch})
                correct_preds = tf.equal(tf.argmax(preds, 1), tf.argmax(Y_batch, 1))
                accuracy = tf.reduce_sum(tf.cast(correct_preds, tf.float32)) 
    
                total_correct_preds += sess.run(accuracy)
    
            print "Accuracy {0}".format(total_correct_preds/MNIST.test.num_examples)

    我尝试修改learning_rate和weights的标准差:

    w = tf.Variable(tf.random_normal(shape=[in_size, out_size], stddev=0.1))
    ...
    learning_rate=0.2

    收敛明显加快:

  • 相关阅读:
    List接口之ArrayList
    锁定线程:同步方法
    锁定线程:同步块
    通过Lambda表达式实现多线程
    通过实现Runnable接口来实现多线程
    通过继承Thread类实现多线程
    super关键字的经典案例
    Merge Two Sorted Lists
    Remove Element
    Remove Duplicates from Sorted List
  • 原文地址:https://www.cnblogs.com/exciting/p/11340062.html
Copyright © 2020-2023  润新知