• 1.2 eigen中矩阵和向量的运算


    1.2 矩阵和向量的运算

    1.介绍

    eigen给矩阵和向量的算术运算提供重载的c++算术运算符例如+-*或这一些点乘dot(),叉乘cross()等等。对于矩阵类(矩阵和向量,之后统称为矩阵

    类),算术运算只重载线性代数的运算。例如matrix1*matrix2表示矩阵的乘法,同时向量+标量是不允许的!如果你想进行所有的数组算术运算,请看下

    一节!

    2.加减法

    因为eigen库无法自动进行类型转换,因此矩阵类的加减法必须是两个同类型同维度的矩阵类相加减。

    这些运算有:

    双目运算符:+a+b

    双目运算符:-a-b

    单目运算符:--a

    复合运算符:+=a+=b

    复合运算符:-=a-=b

    例子:

    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
    Matrix2d a;
    a << 1, 2,
    3, 4;
    MatrixXd b(2,2);
    b << 2, 3,
    1, 4;
    std::cout << "a + b =
    " << a + b << std::endl;
    std::cout << "a - b =
    " << a - b << std::endl;
    std::cout << "Doing a += b;" << std::endl;
    a += b;
    std::cout << "Now a =
    " << a << std::endl;
    Vector3d v(1,2,3);
    Vector3d w(1,0,0);
    std::cout << "-v + w - v =
    " << -v + w - v << std::endl;
    } 

    3.标量乘法和除法

    标量的乘除法非常简单:

    双目运算符:*matrix*scalar

    双目运算符:*scalar*matrix

    即乘法满足交换律

    双目运算符:/matrix/scalar

    矩阵中的每一个元素除以标量

    复合运算符:*=matrix*=scalar

    复合运算符:/=matrix/=scalar

    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
    Matrix2d a;
    a << 1, 2,
    3, 4;
    Vector3d v(1,2,3);
    std::cout << "a * 2.5 =
    " << a * 2.5 << std::endl;
    std::cout << "0.1 * v =
    " << 0.1 * v << std::endl;
    std::cout << "Doing v *= 2;" << std::endl;
    v *= 2;
    std::cout << "Now v =
    " << v << std::endl;
    }
    //output
    a * 2.5 =
    2.5 5
    7.5 10
    0.1 * v =
    0.1
    0.2
    0.3
    Doing v *= 2;
    Now v =
    2
    4
    6

    4.对表达式模板的注释

     在eigen中,+号算术运算符不会通过自身函数执行任何计算,它们只是返回一个表达式,来描述计算的过程。实际的计算是在执行等号时,整个表达式开

    始进行计算。

     比如:

    VectorXf a(50), b(50), c(50), d(50);
    ...
    a = 3*b + 4*c + 5*d;

    eigen把它编译成一个循环,这样数组只执行依次运算,就像下列循环一样:

    for(int i = 0; i < 50; ++i)
    a[i] = 3*b[i] + 4*c[i] + 5*d[i]; 

    因此,在eigen 中,你不必担心使用相当大的算术运算表达式,它会提供给eigen更多优化代码的机会。

    5.转置和共轭

    矩阵类的成员函数transpose(),conjugate(),adjoint(),分别对应矩阵的转置 ,共轭 ,共轭转置矩阵特此说明adjoint()并不表示伴随矩

    阵,而是共轭转置矩阵!!!!

    例子:

    MatrixXcf a = MatrixXcf::Random(2,2);//生成随机的复数类型矩阵
    cout << "Here is the matrix a
    " << a << endl;
    cout << "Here is the matrix a^T
    " << a.transpose() << endl;
    cout << "Here is the conjugate of a
    " << a.conjugate() << endl;
    cout << "Here is the matrix a^*
    " << a.adjoint() << endl;
    //output
    Here is the matrix a
    (-0.211,0.68) (-0.605,0.823)
    (0.597,0.566) (0.536,-0.33)
    Here is the matrix a^T
    (-0.211,0.68) (0.597,0.566)
    (-0.605,0.823) (0.536,-0.33)
    Here is the conjugate of a
    (-0.211,-0.68) (-0.605,-0.823)
    (0.597,-0.566) (0.536,0.33)
    Here is the matrix a^*
    (-0.211,-0.68) (0.597,-0.566)
    (-0.605,-0.823) (0.536,0.33)

    对于实矩阵,是没有共轭矩阵的,同时它的共轭转置矩阵(adjoint())等于它的转置(transpose()).

    对于基本的算术运算,转置和共轭转置函数返回的是矩阵的引用,而不会实际转换矩阵对象。如果你对bb=a.transpose(),这个将在求转置矩阵的同时,

    将结果赋值给b。但是如果将a=a.transpose(),eigen将会在计算a的转置完成之前开始赋值结果给a,因此,这样的赋值将不会将a替换成它的转置,而是:

    Matrix2i a; a << 1, 2, 3, 4;
    cout << "Here is the matrix a:
    " << a << endl;
    a = a.transpose(); // !!! do NOT do this !!!
    
    cout << "and the result of the aliasing effect:
    " << a << endl;
    //output
    Here is the matrix a:
    1 2
    3 4
    and the result of the aliasing effect:
    1 2
    2 4

     结果不再是a的转置,而是发生了混叠(aliasing issue.在调试模式中,在到达断点之前,这样的错误很容易被检测到。

    为了将a替换为a的转置矩阵,可以使用transposeInPlace()函数:

    MatrixXf a(2,3); a << 1, 2, 3, 4, 5, 6;
    cout << "Here is the initial matrix a:
    " << a << endl;
    a.transposeInPlace();
    cout << "and after being transposed:
    " << a << endl;
    //output
    Here is the initial matrix a:
    1 2 3
    4 5 6
    and after being transposed:
    1 4
    2 5
    3 6

    同样地,对于共轭转置矩阵(adjoint())也有类似的成员函数(adjointInPlace()).

    6.矩阵-矩阵乘法和矩阵-向量乘法

    矩阵乘法使用*运算符;

    双目运算符:a*b

    复合运算符:a*=b

    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    int main()
    {
    Matrix2d mat;
    mat << 1, 2,
    3, 4;
    Vector2d u(-1,1), v(2,0);
    std::cout << "Here is mat*mat:
    " << mat*mat << std::endl;
    std::cout << "Here is mat*u:
    " << mat*u << std::endl;
    std::cout << "Here is u^T*mat:
    " << u.transpose()*mat << std::endl;
    std::cout << "Here is u^T*v:
    " << u.transpose()*v << std::endl;
    std::cout << "Here is u*v^T:
    " << u*v.transpose() << std::endl;
    std::cout << "Let's multiply mat by itself" << std::endl;
    mat = mat*mat;
    std::cout << "Now mat is mat:
    " << mat << std::endl;
    }
    //output
    Here is mat*mat:
    7 10
    15 22
    Here is mat*u:
    1
    1
    Here is u^T*mat:
    2 2
    Here is u^T*v:
    -2
    Here is u*v^T:
    -2 -0
    2 0
    Let's multiply mat by itself
    Now mat is mat:
    7 10
    15 22

    说明,前述表达式m=m*m可能会引起混叠的问题,但是对于矩阵乘法而言,不必担心:eigen将矩阵的乘法看作一种特殊的情况,它引入一个临时变量,

    因此它将编译成以下代码:

    tmp = m*m;
    m = tmp;

    如果你想让矩阵乘法安全的进行计算而没有混叠问题,你可以使用noalias()成员函数来避免临时变量的问题,例如:

    c.noalias() += a * b; 

    7.点乘和叉乘

    点乘dot(),叉乘cross().点乘也可以使用u.adjoint()*v

    例子:

    #include <iostream>
    #include <Eigen/Dense>
    using namespace Eigen;
    using namespace std;
    int main()
    {
    Vector3d v(1,2,3);
    Vector3d w(0,1,2);
    cout << "Dot product: " << v.dot(w) << endl;//点乘
    double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
    cout << "Dot product via a matrix product: " << dp << endl;
    cout << "Cross product:
    " << v.cross(w) << endl;//叉乘
    }
    //output
    Dot product: 8
    Dot product via a matrix product: 8
    Cross product:
    1
    -2
    1 

    注意:叉乘只能用于维数为3的向量,点乘使用于任何维数的向量。当使用复数时,第一个变量是共轭线性运算,第二个是线性运算。

    8.基本的算术化简计算

    eigen提供一些简化计算将给定的矩阵或向量编程单个值,比如对矩阵的所有元素求和sum(),求积prod(),求最大值maxCoeff()和求最小值

    minCoeff()

    #include <iostream>
    #include <Eigen/Dense>
    using namespace std;
    int main()
    {
    Eigen::Matrix2d mat;
    mat << 1, 2,
    3, 4;
    cout << "Here is mat.sum(): " << mat.sum() << endl;//对矩阵所有元素求和
    cout << "Here is mat.prod(): " << mat.prod() << endl;//对矩阵所有元素求积
    cout << "Here is mat.mean(): " << mat.mean() << endl;//对矩阵所有元素求平均值
    cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;//取矩阵的元素最小值
    cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;//取矩阵元素的最大值
    cout << "Here is mat.trace(): " << mat.trace() << endl;//取矩阵元素的迹
    }
    //output
    Here is mat.sum(): 10
    Here is mat.prod(): 24
    Here is mat.mean(): 2.5
    Here is mat.minCoeff(): 1
    Here is mat.maxCoeff(): 4
    Here is mat.trace(): 5

    矩阵的迹返回的是矩阵对角线元素的和,等价于a.diagonal().sum().

    同时求最大值和最小值的函数可以接受引用的实参,来表示其最大最小值的行数和列数:

    Matrix3f m = Matrix3f::Random();
    std::ptrdiff_t i, j;//i,j是一个整型类型
    float minOfM = m.minCoeff(&i,&j);//矩阵可以接受两个引用参数
    cout << "Here is the matrix m:
    " << m << endl;
    cout << "Its minimum coefficient (" << minOfM << ") is at position (" << i << "," << j << ")
    
    ";//输出最小值所在行数列数
    RowVector4i v = RowVector4i::Random();
    int maxOfV = v.maxCoeff(&i);//向量只接受一个引用参数
    cout << "Here is the vector v: " << v << endl;
    cout << "Its maximum coefficient (" << maxOfV << ") is at position " << i << endl;//输出最大值所在列数
    //output
    Here is the matrix m:
    0.68 0.597 -0.33
    -0.211 0.823 0.536
    0.566 -0.605 -0.444
    Its minimum coefficient (-0.605) is at position (2,1)
    Here is the vector v: 1 0 3 -3
    Its maximum coefficient (3) is at position 2

    9.运算的有效性

    eigen库会检查你定义的运算。通常它在编译时检查并产生错误信息。这些错误信息可能很长很丑,但是eigen将重要信息用大写字母来显示出,例如:

    Matrix3f m;
    Vector4f v;
    v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES

    在许多情况下,当使用动态绑定矩阵时,编译器将不会在编译时检查,eigen将会在运行时检查,yejiuis说程序有可能因为不合法的运算而中断。

    MatrixXf m(3,3);
    VectorXf v(4);
    v = m * v; // Run-time assertion failure here: "invalid matrix product"
  • 相关阅读:
    git的使用
    模块化的 require 和 import的区别
    Javascript模块化编程(二)commonJS规范和AMD规范
    Javascript模块化编程(三):require.js的用法
    SQL精华语句
    Convert sql 函数格式
    sql分页存储过程(汇总)
    jira和svn结合
    使用Java Service Wrapper 把Java程序作为Windows系统服务
    Eclipse使用技巧
  • 原文地址:https://www.cnblogs.com/excellentlhw/p/10301344.html
Copyright © 2020-2023  润新知