• 数据结构中的树相关编程题


    2017(3): 计算并输出树中每个叶子结点的data域值与所在的层数(递归)

    void fun(TNode *t,int h){ //t为树结点指针,h为该结点深度
    if(t == NULL)
    return; //如果该结点为空,直接退出该函数
    if(t->firstchild == NULL) //该结点为叶子结点,直接输出
    printf("%c %d",t->data,h);
    fun(t->firstchild,h+1); //递归查询左子树,深度+1
    fun(t->nextsibling,h); //递归查询右子树,深度不变
    }
    void nodedepth(TNode *Tree){
    fun(Tree,1); //Tree为树根,h初始化为1
    }


    2016(3): 计算树中第i层结点的个数(递归)

    void count(TNode *t, int h, int *num){ //t为树结点指针,h为该结点深度,num为记录数组
    if(t == NULL)
    return; //如果该结点为空,直接退出该函数
    num[h]++; //t为非空结点(深度为h),则h的记录+1
    fun(t->firstchild,h+1); //递归查询左子树,深度+1
    fun(t->nextsibling,h); //递归查询右子树,深度不变
    }
    void nodenum(TNode *t){
    int num[200]={0}; //记录数组(足够大),初始化为0
    count(t,1,num); //初始化h为1
    for(int i=1; i<200 &&num[i] != 0; i++) //记录数组从1开始输出,且只输出不为0的层次
    printf("第%d层:%d个结点",i,num[i]);
    }


    2015(数据结构(821))(3): 计算树中每个结点的度(递归遍历,单点查询)

    int count(TNode *t){ //一个结点的度计算函数,
    if(t == NULL || t->firstchild == NULL)
    return 0; //空指针返回0,若左子树为NULL则表示该结点无孩子结点,也返回0
    int n = 1;
    t = t->firstchild; //从第一个孩子开始计数
    while(t->nextsibling){ //只要存在兄弟结点,度+1
    n++;
    t=t->nextsibling;
    }
    return n;
    }
    void Travel(TNode *t){
    if(t) //如果t不为空
    print("%c的度为:%d",t->data,count(t)); //输出改结点的度
    if(t->firstchild) //t的firstchild不为空
    Travel(t->firstchild); //递归遍历左子树
    if(t->nextsibling) //t的nextsibling不为空
    Travel(t->nextsibling); //遍历右子树
    }


    2015(数据结构及程序设计828) (3)求二叉树中叶子结点的数目(递归)

    void Travel(TNode *t,int *num){
    if(t == NULL)
    return ;
    if(t->lchild == NULL && t->rchild == NULL)
    *num++; //叶子结点数+1
    if(t->lchild)
    Travel(t->lchild); //递归遍历左子树
    if(t->rchild)
    Travel(t->rchild); //递归遍历右子树
    }

    int count(TNode *t){
    int num = 0;
    Travel(t,&num);
    return num;
    }


    2014(数据结构821) (3)输出二叉树中每个结点的层数

    void fun(TNode *t,int h){ //t为树结点指针,h为该结点深度(层数)
    if(t == NULL)
    return; //如果该结点为空,直接退出该函数
    if(t->lchild == NULL && t->rchild == NULL) //该结点为叶子结点,直接输出
    printf("%c %d",t->data,h);
    fun(t->lchild,h+1); //递归查询左子树,深度+1
    fun(t->rchild,h+1); //递归查询右子树,深度+1
    }
    void nodedepth(TNode *Tree){
    fun(Tree,1); //Tree为树根,h初始化为1
    }

    2013数据结构 (3)计算二叉树中度为1的结点个数

    void count(BiNode *t,int *num){
    if(t == NULL)
    return ;
    if((t->rchild==NULL && t-lchild!=NULL) || (t->rchild!=NULL && t->lchild==NULL))
    *num++; //左右子树中只有一个存在,及度为1,num+1
    count(t->lchild,num);
    count(t->rchild,num);
    }
    int countD(BiNode *t){
    int num = 0;
    count(t,&num);
    return num;
    }


    2012数据结构: (2)建树
    BiTree Create(ElemType A[],int i){ //此处的i为下标
    if(i > n)
    return NULL; //下标超界,返回NULL
    BiNode *p = (BiNode *)malloc(sizeof(BINode));
    p->data = A[i];
    p->lchild = Create(A,2*i);
    p->rchild = Create(A,2*i+1);
    return p;
    }

    2011数据结构: (2)二叉排序树,按递减次序打印结点值
    typedef struct TNode{
    int data;
    TNode *lchild,*rchild;
    } TNode;
    void Travel(TNode *t, int *stack, int &top){ //t为树结点指针,stack为数组首地址,top为栈顶指针
    //二叉排序树,左子树都比树根小,右边都比树根大,中序遍历得到由小到大的数列
    if(t == NULL)
    return ;
    //递归中序遍历
    Travel(t->lchild);
    stack[top++] = t->data; //压栈
    Travel(t->rchild);
    }
    void fun(TNode *t){
    int stack[200]; //stack足够大
    int top = 0; //top为栈顶指针,初始化为0
    Travel(t,stack,top);
    while(top > 0){
    printf("%d ",stack[top]); //出栈(输出)
    }
    }

  • 相关阅读:
    JS 日期实用方法
    JQuery Ajax
    安卓开发(Java)中关于final关键字与线程安全性
    Android源码中final关键字的用法及final,finally,finalize的区别
    RecyclerView常见问题解决方案,RecyclerView嵌套自动滚动,RecyclerView 高度设置wrap_content 无作用等问题
    你真的懂Handler.postDelayed()的原理吗?
    Java并发编程的艺术(十三)——锁优化
    Java并发编程的艺术(十二)——线程安全
    Java并发编程的艺术(十一)——线程池(2)
    Java并发编程的艺术(十)——线程池(1)
  • 原文地址:https://www.cnblogs.com/ewitt/p/11910160.html
Copyright © 2020-2023  润新知