• [TJOI2016&HEOI2016] 排序


    [题目链接]

              https://www.lydsy.com/JudgeOnline/problem.php?id=4552

    [算法]

             首先 , 二分答案x , 将比x小的数看作1,比x大的数看作0

             然后用线段树检验即可

             时间复杂度 : O(MlogN^2)

    [代码]

             

    #include<bits/stdc++.h>
    using namespace std;
    const int MAXN = 1e5 + 10;
    
    int n , m , q;
    int a[MAXN],b[MAXN];
    
    struct Que
    {
            int op , l , r;
    } que[MAXN];
    struct Node
    {
            int l , r;
            int tag , cnt;
    } Tree[MAXN << 2];
    
    template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
    template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
    template <typename T> inline void read(T &x)
    {
        T f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
        x *= f;
    }
    inline void update(int index)
    {
            Tree[index].cnt = Tree[index << 1].cnt + Tree[index << 1 | 1].cnt;
    }
    inline void build(int index,int l,int r)
    {
            Tree[index].l = l; 
            Tree[index].r = r;
            Tree[index].tag = -1;
            if (l == r)
            {
                    Tree[index].cnt = b[l];
                    return;
            }
            int mid = (l + r) >> 1;
            build(index << 1,l,mid);
            build(index << 1 | 1,mid + 1,r);
            update(index);
    }
    inline void pushdown(int index)
    {
            int l = Tree[index].l , r = Tree[index].r ,
                    mid = (l + r) >> 1;
            if (Tree[index].tag != -1)
            {
                    if (Tree[index].tag)
                    {
                            Tree[index << 1].cnt = mid - l + 1;
                            Tree[index << 1 | 1].cnt = r - mid;
                            Tree[index << 1].tag = Tree[index << 1 | 1].tag = 1;
                    } else
                    {
                            Tree[index << 1].cnt = Tree[index << 1 | 1].cnt = 0;
                            Tree[index << 1].tag = Tree[index << 1 | 1].tag = 0;
                    }
                    Tree[index].tag = -1;
            }
    }
    inline void modify(int index,int l,int r,int value)
    {
            if (l > r) return;
            if (Tree[index].l == l && Tree[index].r == r)
            {
                    if (value == 1) Tree[index].cnt = Tree[index].r - Tree[index].l + 1;
                    else Tree[index].cnt = 0;
                    Tree[index].tag = value;
                    return;
            }
            pushdown(index);
            int mid = (Tree[index].l + Tree[index].r) >> 1;
            if (mid >= r) modify(index << 1,l,r,value);
            else if (mid + 1 <= l) modify(index << 1 | 1,l,r,value);
            else 
            {
                    modify(index << 1,l,mid,value);
                    modify(index << 1 | 1,mid + 1,r,value);
            }
            update(index);
    }
    inline int query(int index,int l,int r)
    {
            if (Tree[index].l == l && Tree[index].r == r) return Tree[index].cnt;
            pushdown(index);
            int mid = (Tree[index].l + Tree[index].r) >> 1;
            if (mid >= r) return query(index << 1,l,r);
            else if (mid + 1 <= l) return query(index << 1 | 1,l,r);
            else return query(index << 1,l,mid) + query(index << 1 | 1,mid + 1,r);
    }
    inline bool check(int x)
    {
            for (int i = 1; i <= n; i++) b[i] = (a[i] <= x);
            build(1,1,n);
            for (int i = 1; i <= m; i++)
            {
                    if (que[i].op == 0) 
                    {
                            int cnt = query(1,que[i].l,que[i].r);
                            modify(1,que[i].l,que[i].l + cnt - 1,1);
                            modify(1,que[i].l + cnt,que[i].r,0);
                    } else
                    {
                            int cnt = query(1,que[i].l,que[i].r);
                            modify(1,que[i].l,que[i].r - cnt,0);
                            modify(1,que[i].r - cnt + 1,que[i].r,1);
                    }
            }        
            return query(1,q,q) == 1;
    }
    
    int main()
    {
            
            read(n); read(m);
            for (int i = 1; i <= n; i++) read(a[i]);
            for (int i = 1; i <= m; i++)
            {
                    read(que[i].op);
                    read(que[i].l);
                    read(que[i].r);
            }
            read(q);
            int l = 1 , r = n , ans;
            while (l <= r)
            {
                    int mid = (l + r) >> 1;
                    if (check(mid))
                    {
                            ans = mid;
                            r = mid - 1;
                    } else l = mid + 1;
            }
            printf("%d
    ",ans);
            
            return 0;
        
    }
  • 相关阅读:
    C/C++语言void及void指针深层探索(转)
    Linux C++编程中的正则表达式使用范例
    正则表达式的基本概念和原理
    Web前端,高性能优化
    python爬虫练习2苏宁图书信息
    tensorflow鸢尾花分类
    在线编辑word文档 可保存到服务器
    如何取得DataGrid绑定列和模板列中的值
    ComponetOne C1WebChart使用精华
    C#多线程使用进度条
  • 原文地址:https://www.cnblogs.com/evenbao/p/9769525.html
Copyright © 2020-2023  润新知