• [NOIP 2014] 飞扬的小鸟


    [题目链接]

             http://uoj.ac/problem/17

    [算法]

            动态规划,f[i][j]表示横坐标为i,高度为j时,最少需要点击屏幕的次数,转移类似于背包

            时间复杂度 : O(NM)

    [代码]

           

    #include<bits/stdc++.h>
    using namespace std;
    #define MAXN 10010
    #define MAXM 1010
    const int inf = 2e9;
    
    int i,j,n,m,k,P,L,H,cnt,ans,t;
    int X[MAXN],Y[MAXN],l[MAXN],r[MAXN];
    int f[MAXN][MAXM];
     
    namespace IO
    {
            template <typename T> inline void read(T &x)
            {
                    int f = 1; x = 0;
                    char c = getchar();
                    for (; !isdigit(c); c = getchar())
                    {
                            if (c == '-') f = -f;
                    }
                    for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
                    x *= f;
            }
            template <typename T> inline void write(T x)
            {
                    if (x < 0)
                    {
                            putchar('-');
                            x = -x;
                    }
                    if (x > 9) write(x / 10);
                    putchar(x % 10 + '0');
            }
            template <typename T> inline void writeln(T x)
            {
                    write(x);
                    puts("");
            }
    } ;
    
    int main() 
    {
            
            IO :: read(n); IO :: read(m); IO :: read(k);
            for (i = 0; i < n; i++)
            {
                    IO :: read(X[i]);
                    IO :: read(Y[i]);
            }
            for (i = 0; i <= n; i++)
            {
                    l[i] = 0;
                    r[i] = m + 1;
            }
            for (i = 1; i <= k; i++)
            {
                    IO :: read(P); IO :: read(L); IO :: read(H);
                    l[P] = L;
                    r[P] = H;
            }
            for (i = 0; i <= n; i++)
            {
                    for (j = 0; j <= m; j++)
                    {
                            f[i][j] = inf;
                    }
            }
            for (i = 1; i <= m; i++) f[0][i] = 0;
            for (i = 1; i <= n; i++)
            {
                    for (j = 1; j <= m; j++)
                    { 
                            if (j >= X[i - 1])
                            {
                                    f[i][j] = min(f[i][j],f[i - 1][j - X[i - 1]] + 1);
                                    f[i][j] = min(f[i][j],f[i][j - X[i - 1]] + 1);
                            }
                            if (j == m)
                            {
                                    for (t = j - X[i - 1]; t <= m; t++) 
                                    {
                                            f[i][m] = min(f[i][m],f[i - 1][t] + 1);
                                            f[i][m] = min(f[i][m],f[i][t] + 1);
                                    }
                            }
                    }    
                    for (j = l[i] + 1; j <= r[i] - 1; j++) 
                    {
                            if (j + Y[i - 1] <= m)
                                    f[i][j] = min(f[i][j],f[i - 1][j + Y[i - 1]]);
                    }
                    for (j = 1; j <= l[i]; j++) f[i][j] = inf;
                    for (j = r[i]; j <= m; j++) f[i][j] = inf;
            }
            cnt = k; ans = inf;
            for (i = n; i >= 1; i--)
            {
                    for (j = l[i] + 1; j <= r[i] - 1; j++) ans = min(ans,f[i][j]);
                    if (ans != inf) break;
                    if (r[i] <= m) cnt--;        
            }
            if (cnt != k) 
            {
                    IO :: writeln(0);
                    IO :: writeln(cnt);
            } else
            {
                    IO :: writeln(1);
                    IO :: writeln(ans);
            }
            
            return 0;
        
    }
  • 相关阅读:
    ural 1146. Maximum Sum(动态规划)
    ural 1119. Metro(动态规划)
    ural 1013. K-based Numbers. Version 3(动态规划)
    Floyd算法
    杭电21题 Palindrome
    杭电20题 Human Gene Functions
    杭电15题 The Cow Lexicon
    杭电三部曲一、基本算法;19题 Cow Bowling
    杭电1002 Etaoin Shrdlu
    Qt 学习之路 2(37):文本文件读写
  • 原文地址:https://www.cnblogs.com/evenbao/p/9483407.html
Copyright © 2020-2023  润新知