• [ZJOI 2019] 麻将


    [题目链接]

            https://loj.ac/problem/3042

    [题解]

           首先考虑将期望拆开 , 有 E(x) = sigma { P (x > i) }

           我们需要求出i张牌仍不能胡牌的概率 , 显然可以转化为求方案数。

           直接动态规划是不好做的 , 但如果我们能将当前手上的麻将状态压成一个数 , 那么就可以设 dp(i , j , k)表示前i种麻将 , 状态为j , 一共选了k张牌的方案数。

           如何将状态压缩呢?

           考虑给定一手牌 , 如何判定它是否能胡牌?

           我们发现对于每个i , 形如"i , i + 1 , i + 2"这样的"顺子"是不超过3个的 , 因为如果超过可以用形如"i , i , i"这样类型的“面子”来替换。 那么可以设f(i , j , k , l)表示前i种牌 , (i - 1)开头的“顺子”有j个 , i开头的“顺子”有k个 , 另有l ( l <= 1) 个对子。 这样一共有O(18N)种状态 , 直接转移即可 , 具体细节不再赘述。

           进一步观察这个动态规划 , 我们发现i其实是无关紧要的 , 这个过程的本质就是每次新加一种类型的麻将 ,更新一个3 * 3的矩阵。 不妨考虑建立有限状态自动机(DFA) , 直接将这个3 * 3的矩阵做为状态 , 将"胡"的节点做为终止节点。 暴力构建这个自动机 , 发现其状态数很小 ,为3956

           那么我们就解决了状态压缩的问题。

           回到刚才的思路 , 不妨设dp(i , j , k)表示加入了i种类型的麻将 , 现在在自动机上j号节点 , 一共选了k张牌的方案数。 用一些组合数学的技巧就可以实现转移 , 具体细节不再赘述。

           那么这道题就做完了 , 时间复杂度 : O(N ^ 2M) (M为自动机的状态数)

    [代码]

           

    /*
          Author : @evenbao
          Created : 2020 / 07 / 29 
    */
    
    #ifdef _MSC_VER
    #define _CRT_SECURE_NO_WARNINGS
    #endif
    
    #include<bits/stdc++.h>
    
    using namespace std;
    
    typedef long long LL;
    
    #define pii pair<int , int>
    #define mp make_pair
    #define fi first
    #define se second
    
    const int N = 1e2 + 5;
    const int M = 4e3 + 5;
    const int mod = 998244353;
    
    template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
    template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
    template <typename T> inline void read(T &x) {
        T f = 1; x = 0;
        char c = getchar();
        for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
        for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
        x *= f;
    }
    
    inline void inc(int &x , int y) { 
            x = x + y < mod ? x + y : x + y - mod; 
    }
    inline void dec(int &x , int y) {
            x = x - y >= 0 ? x - y : x - y + mod;
    }
    inline int quickpow(int a , int n) {
            int b = a , res = 1;
            for (; n; n >>= 1 , a = (LL) a * a % mod)
                    if (n & 1) res = (LL) res * a % mod;
            return res;
    }
    struct State {
            int dp[3][3];
            State() {
                    memset(dp , 255 , sizeof(dp));
            }
            friend bool operator < (State a , State b) {
                    for (int i = 0; i < 3; ++i)
                            for (int j = 0; j < 3; ++j)
                                    if (a.dp[i][j] != b.dp[i][j])
                                            return a.dp[i][j] < b.dp[i][j];
                    return false;
            }
            friend State Max(State a , State b) {
                    State c;
                    for (int i = 0; i < 3; ++i)
                            for (int j = 0; j < 3; ++j)
                                    c.dp[i][j] = max(a.dp[i][j] , b.dp[i][j]);
                    return c;
            }
            friend State Trans(State a , int b) {
                    State c;
                    for (int i = 0; i < 3; ++i)
                            for (int j = 0; j < 3; ++j)
                                    if (~a.dp[i][j])
                                            for (int k = 0; k < 3 && i + j + k <= b; ++k)
                                                    chkmax(c.dp[j][k] , min(i + a.dp[i][j] + (b - i - j - k) / 3 , 4));
                    return c;
            }
    } ;
    
    struct Mahjong {
            pair < State , State > god;
            int cnt;
            Mahjong() {
                    memset(god.first.dp , 255 , sizeof(god.first.dp));
                    memset(god.second.dp , 255 , sizeof(god.second.dp));
                    god.first.dp[0][0] = cnt = 0;
            }
            friend bool operator < (Mahjong a , Mahjong b) {
                    return a.cnt != b.cnt ? a.cnt < b.cnt : a.god < b.god;
            }
            friend Mahjong Trans(Mahjong a , int b) {
                    a.cnt = min(a.cnt + (b >= 2) , 7);
                    a.god.second = Trans(a.god.second , b);
                    if (b >= 2)
                            a.god.second = Max(a.god.second , Trans(a.god.first , b - 2));
                    a.god.first = Trans(a.god.first , b);
                    return a;
            }
            inline bool right() {
                    if (cnt >= 7) return 1;
                    for (int i = 0; i < 3; ++i)
                            for (int j = 0; j < 3; ++j)
                                    if (god.second.dp[i][j] == 4) return 1;
                    return 0;
            }
    } mahjong[M];
    
    int n , tot;
    map < Mahjong , int > idx;
    bool win[M];
    int org[N] , dp[N][M][4 * N] , trans[M][5] , fac[M] , c[M][5];
    
    inline void Dfs_Mahjong(Mahjong now) {
            if (idx.find(now) != idx.end()) return;
            mahjong[++tot] = now;
            win[tot] = now.right();
            idx[now] = tot;
            for (int i = 0; i <= 4; ++i)
                    Dfs_Mahjong(Trans(now , i));
    }
    
    int main() {
            
            fac[0] = 1;
            for (int i = 1; i < M; ++i) 
                    fac[i] = (LL) fac[i - 1] * i % mod;
            for (int i = 0; i < M; ++i) {
                    c[i][0] = 1;
                    for (int j = 1; j <= min(i , 4); ++j)
                            c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % mod;
                    continue;
            }
            Dfs_Mahjong(Mahjong());
            for (int i = 1; i <= tot; ++i)
            for (int j = 0; j <= 4; ++j)
                    trans[i][j] = idx[Trans(mahjong[i] , j)];
            scanf("%d" , &n);
            for (int i = 0; i < 13; ++i) {
                    int x; scanf("%d%*d" , &x);
                    ++org[x];
            }
            dp[0][1][0] = 1;
            for (int i = 0 , cp = 0; i < n; ++i) {
                    cp += org[i + 1];
                    for (int j = 1; j <= tot; ++j) {
                            for (int l = org[i + 1]; l <= 4; ++l) {
                                    int *nf = dp[i + 1][trans[j][l]] , *ff = dp[i][j];
                                    int tmp = (LL) c[4 - org[i + 1]][l - org[i + 1]] * fac[l - org[i + 1]] % mod;
                                    for (int k = 0; k + l <= 4 * n; ++k) {
                                            if (!ff[k]) continue;
                                            inc(nf[k + l] , (LL) ff[k] * tmp % mod * c[k + l - cp][l - org[i + 1]] % mod);
                                    }
                            }
                    }
            }
            int ans = 0 , dw = 1;
            for (int i = 13; i <= 4 * n; ++i) {
                    int up = 0;
                    for (int j = 1; j <= tot; ++j)
                            if (!win[j]) inc(up , dp[n][j][i]);
                    inc(ans , (LL) up * quickpow(dw , mod - 2) % mod);
                    dw = (LL) dw * (4 * n - i) % mod;
            }
            printf("%d
    " , ans);
          return 0;
    }
  • 相关阅读:
    入门金融学(1)
    递归之八皇后
    新手Oracle安装及使用入门
    RegExp正则校验之Java及R测试
    Mysql实现行列转换
    R语言之RCurl实现文件批量下载
    Consumer clientId=consumer-1, groupId=console-consumer-950] Connection to node -1 could not be
    线程池拒绝策略
    spring较为常用注解
    idea springboot启动报SLF4J:Failed to load class “org.slf4j.impl.StaticLoggerBinder”
  • 原文地址:https://www.cnblogs.com/evenbao/p/13398233.html
Copyright © 2020-2023  润新知