• LC 873. Length of Longest Fibonacci Subsequence


    A sequence X_1, X_2, ..., X_n is fibonacci-like if:

    • n >= 3
    • X_i + X_{i+1} = X_{i+2} for all i + 2 <= n

    Given a strictly increasing array A of positive integers forming a sequence, find the length of the longest fibonacci-like subsequence of A.  If one does not exist, return 0.

    (Recall that a subsequence is derived from another sequence A by deleting any number of elements (including none) from A, without changing the order of the remaining elements.  For example, [3, 5, 8] is a subsequence of [3, 4, 5, 6, 7, 8].)

    Example 1:

    Input: [1,2,3,4,5,6,7,8]
    Output: 5
    Explanation:
    The longest subsequence that is fibonacci-like: [1,2,3,5,8].
    

    Example 2:

    Input: [1,3,7,11,12,14,18]
    Output: 3
    Explanation:
    The longest subsequence that is fibonacci-like:
    [1,11,12], [3,11,14] or [7,11,18].
    

    Note:

    • 3 <= A.length <= 1000
    • 1 <= A[0] < A[1] < ... < A[A.length - 1] <= 10^9
    • (The time limit has been reduced by 50% for submissions in Java, C, and C++.)

    my solution.

    Runtime: 935 ms, faster than 2.29% of Java online submissions for Length of Longest Fibonacci Subsequence.

    我的思路,采用map,虽然也是dp,但是还是一个n2的时间复杂度,看了别人的做法,用的是头尾指针逼近,二分法。今天的周赛里判断数组成三角形的快速判断方法也是这样的。

    class Solution {
      public int lenLongestFibSubseq(int[] A) {
        Map<Integer, Map<Integer,Integer>> mp = new HashMap<>();
        int ret = 0;
        for(int i=0; i<A.length; i++){
          if(i == 0) mp.put(A[i], new HashMap<>());
          else {
            mp.put(A[i],new HashMap<>());
            Map<Integer,Integer> mpai = mp.get(A[i]);
            for(int j=0; j<i; j++){
              Map<Integer,Integer> mpaj = mp.get(A[j]);
              mpai.put(A[j], mpaj.getOrDefault(A[i]-A[j],0)+1);
              ret = Math.max(ret, mpai.get(A[j]));
            }
          }
        }
        return ret > 1 ? ret + 1 : 0;
      }
    }

    网上的思路。

     Runtime: 41 ms, faster than 94.29% of Java online submissions for Length of Longest Fibonacci Subsequence.

    class Solution {
      public int lenLongestFibSubseq(int[] A) {
        if(A.length < 3) return 0;
        int ret = 0;
        int[][] dp = new int[A.length][A.length];
        for(int i=2; i<A.length; i++){
          int left = 0, right = i-1;
          while(left < right){
            if(A[left] + A[right] == A[i]){
              dp[right][i] = dp[left][right]+1;
              ret = Math.max(ret, dp[right][i]);
              left++;
              right--;
            }else if(A[left] + A[right] > A[i]){
              right--;
            }else {
              left++;
            }
          }
        }
        return ret == 0 ? 0 : ret + 2;
      }
    }
  • 相关阅读:
    结构体的malloc与数组空间
    绘制K线图
    加载文件
    数据分析(绘图)
    GIT操作
    疑难杂症汇总
    Shell编程2
    shell编程1
    shell命令2
    Shell命令1
  • 原文地址:https://www.cnblogs.com/ethanhong/p/10263323.html
Copyright © 2020-2023  润新知