Write an iterator that iterates through a run-length encoded sequence.
The iterator is initialized by RLEIterator(int[] A)
, where A
is a run-length encoding of some sequence. More specifically, for all even i
, A[i]
tells us the number of times that the non-negative integer value A[i+1]
is repeated in the sequence.
The iterator supports one function: next(int n)
, which exhausts the next n
elements (n >= 1
) and returns the last element exhausted in this way. If there is no element left to exhaust, next
returns -1
instead.
For example, we start with A = [3,8,0,9,2,5]
, which is a run-length encoding of the sequence [8,8,8,5,5]
. This is because the sequence can be read as "three eights, zero nines, two fives".
Example 1:
Input: ["RLEIterator","next","next","next","next"], [[[3,8,0,9,2,5]],[2],[1],[1],[2]]
Output: [null,8,8,5,-1]
Explanation:
RLEIterator is initialized with RLEIterator([3,8,0,9,2,5]).
This maps to the sequence [8,8,8,5,5].
RLEIterator.next is then called 4 times:
.next(2) exhausts 2 terms of the sequence, returning 8. The remaining sequence is now [8, 5, 5].
.next(1) exhausts 1 term of the sequence, returning 8. The remaining sequence is now [5, 5].
.next(1) exhausts 1 term of the sequence, returning 5. The remaining sequence is now [5].
.next(2) exhausts 2 terms, returning -1. This is because the first term exhausted was 5,
but the second term did not exist. Since the last term exhausted does not exist, we return -1.
Note:
0 <= A.length <= 1000
A.length
is an even integer.0 <= A[i] <= 10^9
- There are at most
1000
calls toRLEIterator.next(int n)
per test case. - Each call to
RLEIterator.next(int n)
will have1 <= n <= 10^9
.
Runtime: 95 ms, faster than 82.10% of Java online submissions for RLE Iterator.
class RLEIterator { private Queue<Integer> q = new ArrayDeque<>(); private int cnt = -1; private int value = -1; public RLEIterator(int[] A) { for(int i=0; i<A.length; i++){ q.add(A[i]); } } public int next(int n) { if(cnt == -1){ if(q.isEmpty()) { return -1; }else { cnt = q.peek();q.poll(); value = q.peek(); q.poll(); } } if(cnt >= n){ cnt -= n; return value; }else { n -= cnt; cnt = -1; } while(!q.isEmpty()){ cnt = q.peek(); q.poll(); value = q.peek(); q.poll(); if(cnt >= n) { cnt -= n; return value; }else{ n -= cnt; cnt = -1; } } return -1; } }