• java.utils.HashMap数据结构分析


    java.utils.HashMap数据结构分析

    标签: 

    java

     

    map

     

    hashmap

     

    源码分析

    分类: Java
    java.utils.HashMap数据结构分析
    上图为Hashmap的数据结构图,具体实线是采用数组结合链表实现,链表是为了解决在hash过程中因hash值一样导致的碰撞问题。
    所以在使用自定义对象做key的时候,一定要去实现hashcode方法,不然hashmap就成了纯粹的链表,查找性能非常的慢,添加节点元素也非常的慢。如
    import java.util.HashMap;
    import java.util.Map;
    public class User {

    private String username;

    public boolean equals(Object obj) {

    User user=(User)obj;

    return username.equals(user.username);}

    //手动将hashCode 返回一样的值

    public int hashCode() {

    return 1;

    }

    public static void main(String args[]){

    Map<User,String>map=new HashMap<User,String>();

    for(int i=0;i<10000;i++){

    User one=new User();

    one.setUsername(i+" user");

    map.put(one, i+"");

    }

    }

    }

    java.utils.HashMap数据结构分析
    debug发现,添加9个user对象后数组table的entry通过hash后的到数组index为1,即数组第二个位置,每次都是一样的值,导致hash碰撞,所有的元素都通过链表形式加入到entry当中,并没有均匀分布到16个位置当中(默认使用的map构造方法),所以如果在查找的时候就是纯粹的线性查找(链表)。性能相当相当的低。
     
    具体HashMap分析如下:
    ---------------------------------------------------------------------------------------------
    public class HashMap<K,V>
        extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable
    {
        static final int DEFAULT_INITIAL_CAPACITY = 16;//初始容量
     
        static final int MAXIMUM_CAPACITY = 1 << 30;//最大容量 2的30次方
        static final float DEFAULT_LOAD_FACTOR = 0.75f;//默认加载因子
        transient Entry[] table;//条目(entry),大小跟容量大小一致(capacity)
        transient int size; //map所包含键-值对的数量 每增加一个k-v,根据k来判断是否自增长
        int threshold; //容量与加载因子的乘积,当map的size(entry个数)大于等于这个值时,会重新构造map-table的大小(为原来size的2倍大小,而此时threshold=size*loadFactor)
        final float loadFactor;//加载因子(人为指定,即在构造对象的时候指定合适的加载因子)
        transient int modCount;//当条目增加或者删除的时候modCount会自增长,这个主要用来在防止在非线程安全下迭代访问map的时候发生变化会抛出ConcurrentModificationException异常
     
        public HashMap(int initialCapacity, float loadFactor) {
            if (initialCapacity < 0)
                throw new IllegalArgumentException("Illegal initial capacity: " +
                                                   initialCapacity);
            if (initialCapacity > MAXIMUM_CAPACITY)
                initialCapacity = MAXIMUM_CAPACITY;
            if (loadFactor <= 0 || Float.isNaN(loadFactor))
                throw new IllegalArgumentException("Illegal load factor: " +
                                                   loadFactor);
            //Map容量大小必须为2的幂次方,这里通过算法找出合适的容量大小,如您给定initialCapacity为17,它 //的二进制数为10001
            //当capacity16的时候(10000)已经左移了4次,16<17,所以会将capacity再左移1位,即 //32(100000),所以在创建对象使用
            //Map map=new HashMap(17,0.75),此时真正capacity=32,而不是你开始给的17.
            //想要创建17个容量大小的时候,实际上为您创建了32个容量大小的map
            int capacity = 1;
            while (capacity < initialCapacity)
                capacity <<= 1;
     
            this.loadFactor = loadFactor;
            threshold = (int)(capacity * loadFactor);//32*0.75=24, 当条目达到24的时候会重新构造map结构
            table = new Entry[capacity];//创建条目,大小为32
            init();
        }
        public HashMap(int initialCapacity) {
            this(initialCapacity, DEFAULT_LOAD_FACTOR);
        }
        public HashMap() {
            this.loadFactor = DEFAULT_LOAD_FACTOR;
            threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);//12(默认值)
            table = new Entry[DEFAULT_INITIAL_CAPACITY];//16个(默认值)
            init();
        }
        public HashMap(Map<? extends K, ? extends V> m) {
            this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                          DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
            putAllForCreate(m);
        }
     
        void init() {
        }
     
        static int hash(int h) {
            h ^= (h >>> 20) ^ (h >>> 12);
            return h ^ (h >>> 7) ^ (h >>> 4);
        }
     
       //h&(length-1)等价于h%length,取模运算
        static int indexFor(int h, int length) {
            return h & (length-1);
        }
     
        
        public int size() {
            return size;
        }
     
        public boolean isEmpty() {
            return size == 0;
        }
       //根据KEY找出V,如果key==null,会返回table[0](如果table[0]不为null,并且table[0]对应的key==null)
       //如果table[0]不为null,则检查table[0]的下一个节点(线性链表)是否满足上述情况,满足则返回value,否
       //则没有该key对应的value。
      //key不为null,则计算出key的hash,并根据hash得出在table中的位置,该位置不一定是真正Value对应的
      //位置,还要根据table位置的entry的key的hash以及key值进行比较,不相等则要该位置entry的下一个节点
      //是否满足,满足返回,否则返回null
        public V get(Object key) {
            if (key == null)
                return getForNullKey();
            int hash = hash(key.hashCode());
            for (Entry<K,V> e = table[indexFor(hash, table.length)];
                 e != null;
                 e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                    return e.value;
            }
            return null;
        }
       ......
       ......
    //根据Key的hash值得出在table中的位置,该位置可能会被占用,如果占用entry的hash以及key值完全跟put的key相等,则对该entry进行update,如果不相等,则发生了碰撞,测试要判断当期entry是否有(next)下一个节点(entry),有则继续上一步判断,没有则新增一个entry节点到当前节点。
    //这里可以hash不可能保证每次都不一样,所以我们使用的key的对象如果是自定义的对象,一定要重写hashcode方法保证每个对象的唯一性,这洋就能减少碰撞,如果hashcode一样,这洋在查找对象的时候等于是线性查找,算法复杂度近似O(n),并不能达到hashmap设计本来近似的O(1)
        public V put(K key, V value) {
            if (key == null)
                return putForNullKey(value);
            int hash = hash(key.hashCode());
            int i = indexFor(hash, table.length);
            for (Entry<K,V> e = table[i]; e != null; e = e.next) {
                Object k;
                if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                    V oldValue = e.value;
                    e.value = value;
                    e.recordAccess(this);
                    return oldValue;
                }
            }
     
            modCount++;
            addEntry(hash, key, value, i);
            return null;
        }
        ......
        ......
        //重构map的大小,及重新hash所有元素
      //newCapacity=table.length*2 (即原始table的大小乘以2),按照前面给定的值,这里是32*2=64
    //重构后capacity=64,table的length=64,threshold=64*0.75=48,即当entry的size达到48的时候会再次重构
        void resize(int newCapacity) {
            Entry[] oldTable = table;
            int oldCapacity = oldTable.length;
            if (oldCapacity == MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return;
            }
     
            Entry[] newTable = new Entry[newCapacity];
            transfer(newTable);
            table = newTable;
            threshold = (int)(newCapacity * loadFactor);
        }
    //entry-table的复制,复制过程中重新计算hash,算出在新table中的位置
        void transfer(Entry[] newTable) {
            Entry[] src = table;
            int newCapacity = newTable.length;
            for (int j = 0; j < src.length; j++) {
                Entry<K,V> e = src[j];
                if (e != null) {
                    src[j] = null;
                    do {
                        Entry<K,V> next = e.next;
                        int i = indexFor(e.hash, newCapacity);
                        e.next = newTable[i];
                        newTable[i] = e;
                        e = next;
                    } while (e != null);
                }
            }
        }
     
        public void putAll(Map<? extends K, ? extends V> m) {
            int numKeysToBeAdded = m.size();
            if (numKeysToBeAdded == 0)
                return;
     
            if (numKeysToBeAdded > threshold) {
                int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
                if (targetCapacity > MAXIMUM_CAPACITY)
                    targetCapacity = MAXIMUM_CAPACITY;
                int newCapacity = table.length;
                while (newCapacity < targetCapacity)
                    newCapacity <<= 1;
                if (newCapacity > table.length)
                    resize(newCapacity);
            }
     
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
                put(e.getKey(), e.getValue());
        }
     
       //移除Key对应的entry,如果table中存在因为碰撞问题导致的横向拉链(链表),要对链表进行操作,保证链表的连续性
        public V remove(Object key) {
            Entry<K,V> e = removeEntryForKey(key);
            return (e == null ? null : e.value);
        }
     
        final Entry<K,V> removeEntryForKey(Object key) {
            int hash = (key == null) ? 0 : hash(key.hashCode());
            int i = indexFor(hash, table.length);
            Entry<K,V> prev = table[i];
            Entry<K,V> e = prev;
     
            while (e != null) {
                Entry<K,V> next = e.next;
                Object k;
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k)))) {
                    modCount++;
                    size--;
                    if (prev == e)
                        table[i] = next;
                    else
                        prev.next = next;
                    e.recordRemoval(this);
                    return e;
                }
                prev = e;
                e = next;
            }
     
            return e;
        }
      .....
    ......
        public void clear() {
            modCount++;
            Entry[] tab = table;
            for (int i = 0; i < tab.length; i++)
                tab[i] = null;
            size = 0;
        }
     
        .......
        .......
        public Object clone() {
            HashMap<K,V> result = null;
            try {
                result = (HashMap<K,V>)super.clone();
            } catch (CloneNotSupportedException e) {
                // assert false;
            }
            result.table = new Entry[table.length];
            result.entrySet = null;
            result.modCount = 0;
            result.size = 0;
            result.init();
            result.putAllForCreate(this);
     
            return result;
        }
     
       //entry数据结构,真正Key和Value保存的地方
        static class Entry<K,V> implements Map.Entry<K,V> {
            final K key;
            V value;
            Entry<K,V> next;
            final int hash;
     
           
            Entry(int h, K k, V v, Entry<K,V> n) {
                value = v;
                next = n;
                key = k;
                hash = h;
            }
     
            public final K getKey() {
                return key;
            }
     
            public final V getValue() {
                return value;
            }
     
            public final V setValue(V newValue) {
                V oldValue = value;
                value = newValue;
                return oldValue;
            }
     
            public final boolean equals(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry e = (Map.Entry)o;
                Object k1 = getKey();
                Object k2 = e.getKey();
                if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                    Object v1 = getValue();
                    Object v2 = e.getValue();
                    if (v1 == v2 || (v1 != null && v1.equals(v2)))
                        return true;
                }
                return false;
            }
     
            public final int hashCode() {
                return (key==null   ? 0 : key.hashCode()) ^
                       (value==null ? 0 : value.hashCode());
            }
     
            public final String toString() {
                return getKey() + "=" + getValue();
            }
     
            void recordAccess(HashMap<K,V> m) {
            }
     
           
            void recordRemoval(HashMap<K,V> m) {
            }
        }
        void addEntry(int hash, K key, V value, int bucketIndex) {
            Entry<K,V> e = table[bucketIndex];
            table[bucketIndex] = new Entry<>(hash, key, value, e);
            if (size++ >= threshold)
                resize(2 * table.length);
        }
     
        void createEntry(int hash, K key, V value, int bucketIndex) {
            Entry<K,V> e = table[bucketIndex];
            table[bucketIndex] = new Entry<>(hash, key, value, e);
            size++;
        }
     
     
      ......
     
        ....
    }
  • 相关阅读:
    Docker 日志都在哪里?怎么收集?
    docker link 过时不再用了?那容器互联、服务发现怎么办?
    Centos7.0 配置docker 镜像加速
    使用docker搭建公司redmine服务器
    Jenkins pipeline:pipeline 使用之语法详解
    Xcode脚本自动化打包问题:xcrun: error: unable to find utility "PackageApplication", not a developer tool or in PATH
    java基础(7)---IO流
    java基础(6)---面向对象,类,包
    java基础(5)---内存分配
    java基础(4)---引用数据类型(数组、字符串、集合)
  • 原文地址:https://www.cnblogs.com/erma0-007/p/8629731.html
Copyright © 2020-2023  润新知