• Java数据结构——二叉搜索树


    定义
    二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。

    性质
    1,任意节点x,其左子树中的key不大于x.key,其右子树中的key不小于x.key。
    2,不同的二叉搜索树可以代表同一组值的集合。
    3,二叉搜索树的基本操作和树的高度成正比,所以如果是一棵完全二叉树的话最坏运行时间为Θ(lgn),但是若是一个n个节点连接成的线性树,那么最坏运行时间是Θ(n)。
    4,根节点是唯一一个parent指针指向NIL节点的节点。
    5,每一个节点至少包括key、left、right与parent四个属性,构建二叉搜索树时,必须存在针对key的比较算法。


    简单实现(curd操作)

    TreeNode.java

    public class TreeNode {
    private int data;
    private TreeNode leftChild;
    private TreeNode rightChild;
    public TreeNode parent;
    
    public int getData() {
    return data;
    }
    
    public void setData(int data) {
    this.data = data;
    }
    
    public TreeNode getLeftChild() {
    return leftChild;
    }
    
    public void setLeftChild(TreeNode leftChild) {
    this.leftChild = leftChild;
    }
    
    public TreeNode getRightChild() {
    return rightChild;
    }
    
    public void setRightChild(TreeNode rightChild) {
    this.rightChild = rightChild;
    }
    
    public TreeNode getParent() {
    return parent;
    }
    
    public void setParent(TreeNode parent) {
    this.parent = parent;
    }
    
    public TreeNode(int data) {
    super();
    this.data = data;
    }
    
    }

    BinarySearchTree.java(不含main类,可以自己写main类)

    public class BinarySearchTree {
    private TreeNode root;
    
    //构造二叉搜索树
    public TreeNode creatSearchBinaryTree(int data) {
    TreeNode node = null;
    TreeNode parent = null;
    if (root == null) {
    node = new TreeNode(data);
    root = node;
    }
    node = root;
    while (node != null) {
    parent = node;
    if (data > node.data) {
    node = node.rightChild;
    } else if (data < node.data) {
    node = node.leftChild;
    } else {
    return node;
    }
    }
    node = new TreeNode(data);
    if (data < parent.data) {
    parent.leftChild = node;
    } else {
    parent.rightChild = node;
    }
    node.parent = parent;
    return node;
    }
    
    //中序遍历
    public void inOrder(TreeNode n) {
    if (n != null) {
    inOrder(n.getLeftChild());
    System.out.print(n.data + " ");
    inOrder(n.getRightChild());
    }
    }
    
    // 添加节点
    public boolean insertNode(int data) {
    TreeNode node = new TreeNode(data);
    if (root == null) {
    root = node;
    return true;
    }
    TreeNode parent = root;
    TreeNode current = root;
    while (true) {
    parent = current;
    if (data == current.data) {
    return true;
    }
    if (data < current.data) {
    current = current.leftChild;
    if (current == null) {
    parent.leftChild = node;
    return true;
    }
    } else {
    current = current.rightChild;
    if (current == null) {
    parent.rightChild = node;
    return true;
    }
    }
    }
    
    }
    
    // 删除节点
    public boolean deleteNode(int data) {
    TreeNode current = root;
    TreeNode parent = root;
    boolean isLeftChild = true;
    // 找到要删除的点,并记录该节点是否为左节点
    while (current.data != data) {
    parent = current;
    if (data < current.data) {
    isLeftChild = true;
    current = current.leftChild;
    } else {
    isLeftChild = false;
    current = current.rightChild;
    }
    if (current == null) {
    return false;
    }
    }
    // 如果删除节点为子节点
    if (current.leftChild == null && current.rightChild == null) {
    if (current == root) {
    root = null;
    } else {
    if (isLeftChild == true) {
    parent.leftChild = null;
    } else {
    parent.rightChild = null;
    }
    }
    // 如果删除节点只有一个子节点
    } else if ((current.leftChild != null && current.rightChild == null)
    || (current.leftChild == null && current.rightChild != null)) {
    if (current.rightChild == null) {
    if (root == current) {
    root = current.leftChild;
    } else {
    if (isLeftChild == true) {
    parent.leftChild = current.leftChild;
    } else {
    parent.rightChild = current.leftChild;
    }
    }
    } else {
    if (root == current) {
    root = current.rightChild;
    } else {
    if (isLeftChild == true) {
    parent.leftChild = current.rightChild;
    } else {
    parent.rightChild = current.rightChild;
    }
    }
    }
    // 如果删除节点同时有左右节点,找后继节点
    } else if (current.leftChild != null && current.rightChild != null) {
    TreeNode processer = processer(current);
    if (current == root) {
    root = processer;
    } else {
    if (isLeftChild == true) {
    parent.leftChild = processer;
    } else {
    parent.rightChild = processer;
    }
    }
    processer.leftChild = current.leftChild;
    }
    return true;
    }
    
    //寻找后继节点
    private TreeNode processer(TreeNode delNode) {
    TreeNode parent = delNode;
    TreeNode success = delNode;
    TreeNode current = delNode.rightChild;
    while (current != null) {
    parent = current;
    success = current;
    current = current.leftChild;
    }
    if (success != delNode.rightChild) {
    parent.leftChild = success.rightChild;
    success.rightChild = delNode.rightChild;
    }
    return success;
    }
    
    // 修改节点
    public boolean updateNode(int oldData, int newData) {
    boolean del = deleteNode(oldData);
    insertNode(newData);
    if (del == true) {
    return true;
    } else {
    return false;
    }
    }
    
    // 查找节点
    public TreeNode findNode(int data) {
    TreeNode current = root;
    while (current.data != data) {
    if (data < current.data) {
    current = current.leftChild;
    } else {
    current = current.rightChild;
    }
    if (current == null) {
    return null;
    }
    }
    return current;
    }
    }
  • 相关阅读:
    Postman安装出错.NET Framework 4.5 failed to install
    给小白的资源
    windows update自启动解决方法
    Fragment简介及使用
    samba修复
    我的Android知识结构图——20200507停止更新,后续通过标签或分类继续完善结构图
    Android_适配器(adapter)之BaseAdapter
    Android_适配器(adapter)之SimpleAdapter
    Android_适配器(adapter)之ArrayAdapter
    Linux部分场景非常有用的命令集1_chattr&ldd&xargs&screen&ssh&磁盘&du
  • 原文地址:https://www.cnblogs.com/ericz2j/p/10732521.html
Copyright © 2020-2023  润新知