一、已知前序、中序、后序遍历结果的其中两种,还原二叉树。
①已知前序遍历结果:1,2,4,5,3,6,7
中序遍历结果:4,2,5,1,6,3,7
还原二叉树后BFS出结果。
TreeNode.java
public class TreeNode { private TreeNode leftChild; private TreeNode rightChild; private Object data; public TreeNode getLeftChild() { return leftChild; } public void setLeftChild(TreeNode leftChild) { this.leftChild = leftChild; } public TreeNode getRightChild() { return rightChild; } public void setRightChild(TreeNode rightChild) { this.rightChild = rightChild; } public Object getData() { return data; } public void setData(Object data) { this.data = data; } public TreeNode(Object data) { super(); this.data = data; } }
CreateTree.java:
import java.util.LinkedList; import java.util.Queue; public class CreateTree { public static TreeNode genenateTree(int[] pre, int[] in) { if (pre.length == 0 || in.length == 0) { return null; } TreeNode root = new TreeNode(pre[0]); int i = 0; while (in[i] != pre[0]) { i++; } int[] preLeftChild = new int[i]; int[] preRightChild = new int[pre.length - 1 - i]; int[] inLeftChild = new int[i]; int[] inRightChild = new int[pre.length - 1 - i]; for (int j = 0; j < in.length; j++) { if (j < i) { preLeftChild[j] = pre[j + 1]; inLeftChild[j] = in[j]; } else if (j > i) { preRightChild[j - i - 1] = pre[j]; inRightChild[j - i - 1] = in[j]; } } root.setLeftChild(genenateTree(preLeftChild, inLeftChild)); root.setRightChild(genenateTree(preRightChild, inRightChild)); return root; } public static void visited(TreeNode node) { System.out.print(node.getData() + " "); } public static void LevenOrder(TreeNode root) { if (root == null) { return; } Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); TreeNode temp = null; while (!queue.isEmpty()) { temp = queue.poll(); visited(temp); if (temp.getLeftChild() != null) { queue.add(temp.getLeftChild()); } if (temp.getRightChild() != null) { queue.add(temp.getRightChild()); } } } public static void main(String[] args) { int[] pre = { 1, 2, 4, 5, 3, 6, 7 }; int[] in = { 4, 2, 5, 1, 6, 3, 7 }; LevenOrder(genenateTree(pre, in)); } }
②已知前序遍历结果:1,2,4,5,3,6,7
后序遍历结果:4,5,2,6,7,3,1
这种情况不能确定唯一的二叉树(即根据前序、后序结果不能确定唯一二叉树)
③已知 中序遍历结果:4,2,5,1,6,3,7
后序遍历结果:4,5,2,6,7,3,1
还原二叉树后BFS出结果。
//这里只写出核心代码,其他部分可以参考第一种情况 public class CreateTree { public static TreeNode genenateTree(int[] in, int[] post) { if (post.length == 0 || in.length == 0) { return null; } TreeNode root = new TreeNode(post[post.length - 1]); int i = 0; while (in[i] != post[post.length - 1]) { i++; } int[] postLeftChild = new int[i]; int[] postRightChild = new int[post.length - 1 - i]; int[] inLeftChild = new int[i]; int[] inRightChild = new int[post.length - 1 - i]; for (int j = 0; j < in.length; j++) { if (j < i) { postLeftChild[j] = post[j]; inLeftChild[j] = in[j]; } else if (j > i) { postRightChild[j - i - 1] = post[j - 1]; inRightChild[j - i - 1] = in[j]; } } root.setLeftChild(genenateTree(inLeftChild, postLeftChild)); root.setRightChild(genenateTree(inRightChild, postRightChild)); return root; }
二、如果已知的前序、中序、后序的结果中包含占位符#,此时,只需知道其中一种遍历结果就能还原二叉树,且结果是唯一的。
①已知前序遍历结果是 :"1", "2", "4", "#", "#", "5", "#", "#", "3", "6", "#", "#", "7", "#", "#",还原二叉树后BFS出结果。
import java.util.LinkedList; import java.util.Queue; public class CreateTree { static int count = 0; public static TreeNode genenateTree(String[] data) { TreeNode root = null; if (count >= data.length || data[count++].equals("#")) { root = null; } else { root = new TreeNode(data[count - 1]); root.setLeftChild(genenateTree(data)); root.setRightChild(genenateTree(data)); } return root; } public static void visited(TreeNode node) { System.out.print(node.getData() + " "); } public static void LevenOrder(TreeNode root) { if (root == null) { return; } Queue<TreeNode> queue = new LinkedList<>(); queue.add(root); TreeNode temp = null; while (!queue.isEmpty()) { temp = queue.poll(); visited(temp); if (temp.getLeftChild() != null) { queue.add(temp.getLeftChild()); } if (temp.getRightChild() != null) { queue.add(temp.getRightChild()); } } } public static void main(String[] args) { String[] dataStr = { "1", "2", "4", "#", "#", "5", "#", "#", "3", "6", "#", "#", "7", "#", "#" }; LevenOrder(genenateTree(dataStr)); } }