• Java数据结构——二叉树的遍历(汇总)


    二叉树的遍历分为深度优先遍历(DFS)和广度优先遍历(BFS)

    DFS遍历主要有:

    • 前序遍历
    • 中序遍历
    • 后序遍历

    一、递归实现DFS
    Node.java:

    public class Node {
    private Object data;
    Node richild;
    Node lechild;
    
    public Object getData() {
    return data;
    }
    
    public void setData(Object data) {
    this.data = data;
    }
    
    public Node getRichild() {
    return richild;
    }
    
    public void setRichild(Node richild) {
    this.richild = richild;
    }
    
    public Node getLechild() {
    return lechild;
    }
    
    public void setLechild(Node lechild) {
    this.lechild = lechild;
    }
    
    public Node(Object data, Node lechild, Node richild) {
    super();
    this.data = data;
    this.richild = richild;
    this.lechild = lechild;
    }
    
    public Node() {
    super();
    }
    
    }

    递归遍历:

    public class BTree {
    
    private static Node root;
    //构造树
    public static void init() {
    Node node1 = new Node("A", null, null);
    Node node2 = new Node("B", node1, null);
    Node node3 = new Node("C", null, null);
    Node node4 = new Node("D", node2, node3);
    Node node5 = new Node("E", null, null);
    Node node6 = new Node("F", null, node5);
    Node node7 = new Node("G", node4, node6);
    root = node7;
    }
    //访问节点
    public static void visited(Node n) {
    System.out.print(n.getData() + " ");
    }
    //前序遍历
    public static void preOrder(Node n) {
    if (n != null) {
    visited(n);
    preOrder(n.getLechild());
    preOrder(n.getRichild());
    }
    }
    //中序遍历
    public static void inOrder(Node n) {
    if (n != null) {
    inOrder(n.getLechild());
    visited(n);
    inOrder(n.getRichild());
    }
    }
    //后序遍历
    public static void postOrder(Node n) {
    if (n != null) {
    postOrder(n.getLechild());
    postOrder(n.getRichild());
    visited(n);
    }
    }
    
    public static void main(String[] args) {
    init();
    System.out.print("递归前序:");
    preOrder(root);
    System.out.println();
    System.out.print("递归中序:");
    inOrder(root);
    System.out.println();
    System.out.print("递归后序:");
    postOrder(root);
    System.out.println();
    }
    
    }

    二、非递归实现DFS(依靠栈)

    //前序遍历
    public static void preOrder(Node n) {
    System.out.print("非递归前序:");
    Stack<Node> stack = new Stack<>();
    int index = 0;
    while (n != null || index > 0) {
    while (n != null) {
    System.out.print(n.getData() + " ");
    stack.push(n);
    index++;
    n = n.getLechild();
    }
    n = stack.pop();
    index--;
    n = n.getRichild();
    }
    }
    //中序遍历
    public static void inOrder(Node n) {
    System.out.print("非递归中序:");
    Stack<Node> stack = new Stack<>();
    int index = 0;
    while (n != null || index > 0) {
    while (n != null) {
    stack.push(n);
    index++;
    n = n.getLechild();
    }
    n = stack.pop();
    System.out.print(n.getData() + " ");
    index--;
    n = n.getRichild();
    }
    }
    //后序遍历
    public static void postOrder(Node n) {
    System.out.print("非递归后序:");
    Stack<Node> stack = new Stack<>();
    int index = 0;
    Node lastVisited = null;
    while (n != null || index > 0) {
    while (n != null) {
    stack.push(n);
    index++;
    n = n.getLechild();
    }
    n = stack.peek();
    if (n.getRichild() == null || n.getRichild() == lastVisited) {
    System.out.print(n.getData() + " ");
    lastVisited = n;
    index--;
    stack.pop();
    n = null;
    } else {
    n = n.getRichild();
    }
    }
    }
    

      

    三、实现层序遍历(依靠队列)

    public static void LevenOrder(Node root) {
    if (root == null) {
    return;
    }
    Queue<Node> queue = new LinkedList<>();
    queue.add(root);
    Node temp = null;
    while (!queue.isEmpty()) {
    temp = queue.poll();
    visited(temp);
    if (temp.getLeChild() != null) {
    queue.add(temp.getLeChild());
    }
    if (temp.getRChild() != null) {
    queue.add(temp.getChild());
    }
    }
    }
  • 相关阅读:
    玩转手工测试之客户端产品手工测试提效实践
    接口测试常用工具及测试方法(新手篇)
    我北漂 7 年,再也不打工了!
    测试人如何高效地设计自动化测试框架?
    你这样,测试人员不能活了。。。
    如何优雅地记录操作日志?
    C#String.IndexOf检索字符串中字符出现的次数
    C#基础之数组
    C#基础之is,as关键字
    C#委托与事件
  • 原文地址:https://www.cnblogs.com/ericz2j/p/10679324.html
Copyright © 2020-2023  润新知