• Maxima, Maple, and Mathematica: the Summary~



                            Maxima, Maple, and Mathematica: the Summary

    Before going any further, let us summarise in Table 2.1 what we have glimpsed of Maxima, Maple, and Mathematica so far.


     
    Table 2.1: Comparison between some Maxima, Maple, and Mathematica commands
     MaximaMapleMathematica
    limitlimit(x-7,x,3);limit(x-7,x=3);Limit[x-7,x->3]
    expandexpand((a+b)^3);expand((a+b)^3);Expand[(a+b)^3]
    factorfactor(%); ezgcd(num, denom);factor(%); normal(%);Factor[%]
    solvesolve(a*x^2=4,x);solve(a*x^2=4,x);Solve[a x^2==4,x]
    3D plotsplot3d(sin(x*y),[x,-2,2],[y,-1,1]);plot3d(sin(x*y),x=-2..2,y=-1..1);Plot3D[Sin[x y],{x,-2,2},{y,-1,1}]
        displayset_plot_option([plot_format,gnuplot]);plotsetup(x11);Display["math.eps", %, "EPS"]
        environmentplot_options;plotsetup();$DisplayFunction
    integralintegrate(x^2*sin(alpha*x),x,0,beta);int(x^2*sin(alpha*x),x=0..beta);Integrate[x^2 Sin[alpha x],{x,0,beta}]
    integer factor ifactor(%);FactorInteger(%)
    square rootsqrt(3);sqrt(3);Sqrt[3]
    numericalev(%,numer);evalf(%);N[%,10]
    substitutionev(%,x=1,y=2); or at(%,[x=1,y=2]);eval(%,[x=1,y=2]);ReplaceAll[%,{x->1,y->2}]
    sumsum((1+i)/(1+i^4),i,1,10);sum((1+i)/(1+i^4),i=1..10);Sum[(1+i)/(1+i^4),{i,1,10}]
        delayed'sum((1+i)/(1+i^4),i,1,10);Sum((1+i)/(1+i^4),i=1..10);use :=
    productproduct((i^2+3*i-11)/(i+3),i,0,10);product((i^2+3*i-11)/(i+3),i=0..10);Product[(i^2+3*i-11)/(i+3),{i,0,10}]
        delayed'product((i^2+3*i-11)/(i+3),i,0,10);Product((i^2+3*i-11)/(i+3),i=0..10);use :=
    infinityINFinfinityInfinity
    complex%III
     rectform(%);convert(%,rect); 
     polarform(%);convert(%,polar); 
     realpart(%);Re(%);Re[%]
     imagpart(%);Im(%);Im[%]
     abs(%);abs(%);Abs[%]
     carg(%);argument(%);Arg[%]
    trigonometrytrigsimp(%); trigrat(%);simplify(%);Simplify[%], TrigSimp[%], TrigReduce[%]
     trigexpand(%); TrigExpand[%]
        othertrigrat(%); TrigFactor[%]
    functionsf(x):=x^2+1/2; or define(f(x),x^2+1/2);f:=x->x^2+1/2; or f:=unapply(x^2+1/2,x);f[x_]=x^2+1/2 or f=Function[x,x^2+1/2]
    derivativesdiff(f(x),x,2);diff(f(x),x&2);D[f[x],{x,2}]
        delayed'diff(f(x),x,2);Diff(f(x),x&2);use :=
    arraysarray([x, y], 300);x := array(1..300);Array[x, 300]
    split expressionpickapart(%, 4);addressof(%);FullForm[%];
      disassemble(%);[[3]]
      pointto(a[2]);ReplacePart[Out[32], Expand[Out[54]], 1]
      rhs(solutions[2]); 
    terminator; or $;newline or ;
    range[x,-2,2]x=-2..2{x,-2,2}
    times**space or *
    last result%%%
    assignment::==
    equality====
     
    源地址:
    http://beige.ucs.indiana.edu/P573/node35.html

  • 相关阅读:
    harmonOS分布式软总线
    harmonyOS的Ability是什么(一)FA的Page跳转和迁移
    转 微信支付商户如何处理微信申请退款、退款回调、查询退款接口
    转 Shiro笔记
    sql语句还能这么写(mysql脚步编写)
    Mac Shell 操作
    JSON.stringify 深拷贝的弊端以及常用场景
    elementplus elementui 官网文档如何查看
    QtQt使用QWebsocket实现服务端和客户端通信
    QtQt使用QRegExp实现正则表达式处理(Qt5.14.2+win10)
  • 原文地址:https://www.cnblogs.com/enjoy233/p/3011151.html
Copyright © 2020-2023  润新知