• linux heads分析(转)


    内核默认的运行地址为PHY_OFFSET+0x8000,即物理地址开始后的0x8000字节处,前面是留给参数用的。参数以atag方式存储,默认放在0x100偏移位置。

    http://blog.chinaunix.net/uid-20451980-id-1945241.html

    Linux kernel分析(一)
    注:本文为Stephen Du原创,转载请注明

      一直想把自己自毕业以来学习Linux kernel的点点滴滴进行一次整理,却总是因工作繁忙而一再推迟。最近把kernel知识进行了一次全面的回顾,因此下定决心将这件事情做好。

      本文只针对ARM平台的源码分析并且并不包括bootloader的部分,也就是说只分析kernel内的“标准”代码。闲话少说,正式开始。

     

      bootloader完成基本的硬件初始化后,就开始执行arch/arm/kernel/head.S下的汇编代码,紧接着执行arch/arm/kernel/head-common.S,最后跳转到init/main.c中的start_kernel()函数。现在从arch/arm/kernel/head.S入手,看看这里做了什么。



    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
      以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!(对于逻辑地址,线性地址,虚地址,物理地址,实模式,保护模式等基本概念此处不会解释)

         宏                 位置                           默认值          说明  
    KERNEL_RAM_VADDR  arch/arm/kernel/head.S             0xc0008000      kernel在RAM中的的虚拟地址 
    KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址 
    PAGE_OFFSET      include/asm-arm/memeory.h           0xc0000000      内核空间的起始虚拟地址 
    TEXT_OFFSET      arch/arm/Makefile                   0x00008000      内核相对于存储空间的偏移 
    TEXTADDR         arch/arm/kernel/head.S              0xc0008000      kernel的起始虚拟地址 
    PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址
    KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)

        PHYS_OFFSET是RAM的物理地址,内核规定必须是2M对齐的

     25 #if (PHYS_OFFSET & 0x001fffff)

     26 #error "PHYS_OFFSET must be at an even 2MiB boundary!"

     27 #endif

     

     28 KERNEL_RAM_VADDR定义了经过映射后的内核镜像的virtual地址(link地址),PAGE_OFFSET=3G边界

        KERNEL_RAM_PADDR定义了内核镜像的物理地址。

        问题:内核镜像为什么一定要映射到高3G的地址上呢?不映射不行吗?

        答案:多进程要求多个虚拟地址空间并存,而物理上内存空间只有一个,因此必须将各个进程的虚空间进行动态映射到同一个物理空间上;另一个方面,不同机器环境下,物理内存大小不尽相同(可能太大也可能太小了),必须通过映射屏蔽这些差异以便让进程看不到差异的使用4G(32bit环境)的地址空间!内核属于一个特殊的“进程”(并不是一个进程那么简单),也必须工作于虚地址空间之下(CPU处于实模式下只能寻址有限的物理地址空间),因此需要将物理地址映射到3G(这个3G并不是一定的,可以通过内核编译选项更改,但是通常都是3G)边界的虚地址之上运行,这样基地址+偏移量的寻址思想便可以无缝的使用了!此处答案为本人个人根据现有知识的理解,可能存在错误!


     29 #define KERNEL_RAM_VADDR        (PAGE_OFFSET + TEXT_OFFSET)

     30 #define KERNEL_RAM_PADDR        (PHYS_OFFSET + TEXT_OFFSET)

        
        经过映射后的内核镜像的地址必须是1M对齐的!   

     40 #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000 //The virtual addr of the kernel need to be 1M align

     41 #error KERNEL_RAM_VADDR must start at 0xXXXX8000

     42 #endif
        定义了临时page table的存放地址(虚地址)0xC000000 - 0x4000

     43 swapper_pg_dir

     44         .globl  swapper_pg_dir

     45         .equ    swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000 @The temp page table base addr is here(0xC000000 - 0x4000)

     46 该macro用于获取临时page table的物理地址

     47         .macro  pgtbl, rd

     48         ldr     d, =(KERNEL_RAM_PADDR - 0x4000)

     49         .endm

     50 XIP是片内执行的意思;针对某些存在NOR flash扩展的系统内核镜像是直接存放在XOR flash上运行的,因此镜像的地址应该是NOR flash的地址而不是RAM的地址。

     51 #ifdef CONFIG_XIP_KERNEL

     52 #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)

     53 #define KERNEL_END      _edata_loc

     54 #else

     55 #define KERNEL_START    KERNEL_RAM_VADDR

     56 #define KERNEL_END      _end

     57 #endif

    第一阶段:
        这一段是bootloader进入kernel的一个入口。在进入该函数之前,整个硬件系统至少需要初始化以下的状态:
        1)MMU必须关闭(page table还没有建立,不能进行虚地址转实地址,CPU工作与相对寻址状态,CP指向的是物理地址)
        2)D-cache是CPU的数据cache必须处于关闭状态;I-cache是命令cache可以开也可以关闭!
        3)R0由bootloader必须清零;R1由bootloader设置为machine的number(这个是什么,可以查看内核的ARM boot文档arch/arm/tools/mach-types);R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中并将这个地址传递给kernel以便在进入kernel后使用

     77         .section ".text.head", "ax"

     78         .type   stext, %function
        这里定义了由bootloader进入内核的入口stext!关键的部分来了,哈哈哈

     79 ENTRY(stext)
        由于要做一些底层的初始化,因此先将CPU切入SVC模式并关闭中断(由于中断向量表以及异常向量表并未建立,CPU无法响应中断请求!)

     80         msr     cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode

     81                                                 @ and irqs disabled
        通过协处理器获取处理器ID

     82         mrc     p15, 0, r9, c0, c0              @ get processor id
        此处需要确定CPU的类型才能进行相应的初始化操作

     83         bl      __lookup_processor_type         @ r5=procinfo r9=cpuid

     84         movs    r10, r5                         @ invalid processor (r5=0)?

     85         beq     __error_p                       @ yes, error 'p'
        根据内核中预置的信息,判断当前的board是哪个来确定存储器扩展以及扩展的外设有哪些

     86         bl      __lookup_machine_type           @ r5=machinfo

     87         movs    r8, r5                          @ invalid machine (r5=0)?

     88         beq     __error_a                       @ yes, error 'a'
        此处会去校验atag的内容

     89         bl      __vet_atags
        这里非常重要!由于CPU要开启MMU进入虚地址执行模式,因此必须先建立一个临时的page table(临时的意思是将来会这个table将会被抛弃,重新建立)

     90         bl      __create_page_tables 
        这一句十分重要也值得去细细推敲,看似没有什么用途,但是在后边开启MMU后进入虚地址空间(link地址)的部分至关重要!因为,该伪指令会将__switch_data对应的虚地址加载给r13寄存器,后面会通过将r13加载进pc(指令计数器)达到进入虚地址模式的目的!也就是说此前的所有代码工作于PIC(position independent code),并没有使用link地址,理解这一点很重要!
     99         ldr     r13, __switch_data              @ address to jump to __mmap_switched(This is not PIC addr that means:it is a absolute addr in the kernel image, another words virtual addr) after the MMU switched on and return here which start execute code in the virtual space!!!!!!!!!!!!!!!!!!!!!!!!!!

    100                                                 @ mmu has been enabled
        page table已经建立准备开启MMU

    101         adr     lr, __enable_mmu                @ return (PIC) address
        执行清除CPU cache以及TLB(table lookup buffer是MMU的高速缓冲区,提供高速虚实地址转换,原理是将以前的转换结果放在这个buffer当中,如果请求的地址在这里则不做全局搜索)的工作

    102         add     pc, r10, #PROCINFO_INITFUNC     @Call the __cpu_flush to clear I-cache-D-cache TLB related registered as PROCINFO_INITFUNC      

    103                                                 @After __enable_mmu start to exwcute __switch_data by mov pc, r13 in __enable_mmu

    104 
       多CPU的系统暂时不分析!呵呵

    105 #if defined(CONFIG_SMP)

    106         .type   secondary_startup, #function

    107 ENTRY(secondary_startup)

    108         /*

    109          * Common entry point for secondary CPUs.

    110          *

    111          * Ensure that we're in SVC mode, and IRQs are disabled.  Lookup

    112          * the processor type - there is no need to check the machine type

    113          * as it has already been validated by the primary processor.

    114          */

    115         msr     cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE

    116         mrc     p15, 0, r9, c0, c0              @ get processor id

    117         bl      __lookup_processor_type

    118         movs    r10, r5                         @ invalid processor?

    119         moveq   r0, #'p'                        @ yes, error 'p'

    120         beq     __error

    121 

    122         /*

    123          * Use the page tables supplied from  __cpu_up.

    124          */

    125         adr     r4, __secondary_data

    126         ldmia   r4, {r5, r7, r13}               @ address to jump to after

    127         sub     r4, r4, r5                      @ mmu has been enabled

    128         ldr     r4, [r7, r4]                    @ get secondary_data.pgdir

    129         adr     lr, __enable_mmu                @ return address

    130         add     pc, r10, #PROCINFO_INITFUNC     @ initialise processor

    131                                                 @ (return control reg)

    132 

    133         /*

    134          * r6  = &secondary_data

    135          */

    136 ENTRY(__secondary_switched)

    137         ldr     sp, [r7, #4]                    @ get secondary_data.stack

    138         mov     fp, #0

    139         b       secondary_start_kernel

    140 

    141         .type   __secondary_data, %object

    142 __secondary_data:

    143         .long   .

    144         .long   secondary_data

    145         .long   __secondary_switched

    146 #endif /* defined(CONFIG_SMP) */

    147 

       开启MMU的函数

    155         .type   __enable_mmu, %function

    156 __enable_mmu:

    157 #ifdef CONFIG_ALIGNMENT_TRAP

    158         orr     r0, r0, #CR_A

    159 #else

    160         bic     r0, r0, #CR_A

    161 #endif

    162 #ifdef CONFIG_CPU_DCACHE_DISABLE

    163         bic     r0, r0, #CR_C

    164 #endif

    165 #ifdef CONFIG_CPU_BPREDICT_DISABLE

    166         bic     r0, r0, #CR_Z

    167 #endif

    168 #ifdef CONFIG_CPU_ICACHE_DISABLE

    169         bic     r0, r0, #CR_I

    170 #endif
        此处MMU相关的设置,本人没有细究,有情趣的可以研究研究

    171         mov     r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) |

    172                       domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) |

    173                       domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) |

    174                       domain_val(DOMAIN_IO, DOMAIN_CLIENT))

    175         mcr     p15, 0, r5, c3, c0, 0           @ load domain access register

    176         mcr     p15, 0, r4, c2, c0, 0           @ load page table pointer

    177         b       __turn_mmu_on

        这里真正的开启了MMU并从PIC进入virual地址空间运行!!
    190         .align  5

    191         .type   __turn_mmu_on, %function

    192 __turn_mmu_on:
        执行延时操作(原因在于协处理器相关操作不能立即生效,需要几个ARM的指令周期后才能工作!)

    193         mov     r0, r0                          @delay for the reason of the ARM execute flow!

    194         mcr     p15, 0, r0, c1, c0, 0           @ write control reg

    195         mrc     p15, 0, r3, c0, c0, 0           @ read id reg

    196         mov     r3, r3                          @delay!!!!!for the reason of ARM execute flow!

    197         mov     r3, r3                          @delay!!!!!
       该行代码之前pc方的是物理地址,此后pc存放的将是虚地址,也就是phys+0xc000000

    198         mov     pc, r13                         @jump to the __switch_data; r3 contains the virtual addr of __switch_data, because the MMU is on, so this     virtual addr can be translated into the physical addr automatically!
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        以后的代码在虚地址空间运行!!!!!!!!!!!!!!!!!!!


       该函数在PHYS_OFFSET+0x08000-0x4000处创建临时page table

    215         .type   __create_page_tables, %function

    216 __create_page_tables:

    217         pgtbl   r4                              @ Get page table base address r4=0x4000 16K addr

       清零内存

    222         mov     r0, r4  @Back up base page table addr

    223         mov     r3, #0

    224         add     r6, r0, #0x4000 @ r6 contains the end of page table addr

    225 /***Clear the 16K page table memory to 0*/

    226 1:      str     r3, [r0], #4

    227         str     r3, [r0], #4

    228         str     r3, [r0], #4

    229         str     r3, [r0], #4

    230         teq     r0, r6

    231         bne     1b

    232 /**End*/
       将内核镜像中的MMU flag数值取出,准备设置page table

    233         ldr     r7, [r10, #PROCINFO_MM_MMUFLAGS] @ get the mm_mmuflags

       此处,为当前物理地址起的1M空间建立映射(1M源于ARM的MMU支持2级page,第一级支持1M的page或者指向2级的entry;由于内核镜像的特殊性,它的segments被放在一级page table的1M page内而不是存放在后面将要讲述的4kpage内)
       

       
       该语句比较重要,pc此处指向物理地址,右移20次则得到当前物理地址的1M计数(再左移20位就是segment的地址!,相当于清零低20bit)

    241         mov     r6, pc, lsr #20                 @ start of kernel section r6=pc>>20 contains section addr and the virt addr == phys addr
       根据上句得出的段计数左移20位算出段地址,并将将低20bit设置成MMU的flag,得到一个map entry!

    242         orr     r3, r7, r6, lsl #20             @ flags + kernel base
       将map entry数值写回page table相应的位置,以便MMU查表转换的时候使用!这里有一点值得注意:这里,映射前后的地址空间实际上上一样的,因为pc的虚地址跟物理地址重合!r6(可以理解r6的数值为page table的index)之所以左移2bit是由于每个page table的entry占4个字节,然后page entry addr=r4(基地址)+index*4

    243         str     r3, [r4, r6, lsl #2]            @ identity mapping;Reason see r6=pc>>20

    244                                                 @ r6 contains the index offset in the page table so multiple 4 get the address of the L1 entry

    245         /**Here we need an id to decide which page entry to write the r3, so we apply multi 4 to get the id*/
       

       这里为内核镜像建立映射(映射的本质是设置page table entry,让MMU知道如何将虚地址转换成物理地址);非XIP的时候KERNEL_RAM_VADDR=KERNEL_START
    251         add     r0, r4,  #(KERNEL_START & 0xff000000) >> 18 //Should firstly right shift 20bits and for the reason of page entry is 4 bytes size so left s    hift 2 then is 18;What is 0xff000000?while not 0xfff00000? Answer is in the next code 0x0f00000+0xff000000=0xfff0000!

    252         str     r3, [r0, #(KERNEL_START & 0x00f00000) >> 18]! //Attention!r3's content remains as the kernel section map, so 

    253                                                                 //The two virtual addr corresponds to the same phys addr!

    254         ldr     r6, =(KERNEL_END - 1)

    255         add     r0, r0, #4      //Point to the next L1 entry!

    256         add     r6, r4, r6, lsr #18 //Caculate the end of L1 entry

    257 1:      cmp     r0, r6  //Reaching the end of entry?

    258         add     r3, r3, #1 << 20 //add the segment addr for 1

    259         strls   r3, [r0], #4

    260         bls     1b

    261 

    262 #ifdef CONFIG_XIP_KERNEL

    263         /*

    264          * Map some ram to cover our .data and .bss areas.

    265          */

    266         orr     r3, r7, #(KERNEL_RAM_PADDR & 0xff000000)

    267         .if     (KERNEL_RAM_PADDR & 0x00f00000)

    268         orr     r3, r3, #(KERNEL_RAM_PADDR & 0x00f00000)

    269         .endif

    270         add     r0, r4,  #(KERNEL_RAM_VADDR & 0xff000000) >> 18

    271         str     r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!

    272         ldr     r6, =(_end - 1)

    273         add     r0, r0, #4

    274         add     r6, r4, r6, lsr #18

    275 1:      cmp     r0, r6

    276         add     r3, r3, #1 << 20

    277         strls   r3, [r0], #4

    278         bls     1b

    279 #endif
       由于最低1M存放了bootloader传递给kernel的一些参数,因此需要为它建立map这样开启MMU后就可以访问这些参数了。

    284         add     r0, r4, #PAGE_OFFSET >> 18 @The base virtual addr!

    285         orr     r6, r7, #(PHYS_OFFSET & 0xff000000)

    286         .if     (PHYS_OFFSET & 0x00f00000)

    287         orr     r6, r6, #(PHYS_OFFSET & 0x00f00000)

    288         .endif

    289         str     r6, [r0]
      建好页表返回

    332         mov     pc, lr

    333         .ltorg

    334 

    335 #include "head-common.S"

    ------------------------------------------------------- 

    如下为 head.S内容,我做了简单注释

    /*
    head.s是linux解压后的运行的第一个程序。
    为保持通用性,与机器相关的代码都应有bootloader完成。
    此程序主要完成页表初始化,开启MMU。

    stext->__enable_mmu->__turn_mmu_on->ldr pc, __mmap_switched
    ->__mmap_switched(head-common.S)
    ->b start_kernel(init/main.c)

     以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!
    
         宏                 位置                           默认值          说明  
    KERNEL_RAM_VADDR  arch/arm/kernel/head.S             0xc0008000      kernel在RAM中的的虚拟地址 
    KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000     kernel在RAM中的的物理地址 
    PAGE_OFFSET      include/asm-arm/memeory.h           0xc0000000      内核空间的起始虚拟地址 
    TEXT_OFFSET      arch/arm/Makefile                   0x00008000      内核相对于存储空间的偏移 
    TEXTADDR         arch/arm/kernel/head.S              0xc0008000      kernel的起始虚拟地址 
    PHYS_OFFSET      include/asm-arm/arch-xxx/memory.h   平台相关        RAM的起始物理地址
    KERNEL_START                                        KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,
                                                                         但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)
    */
    
    /*
     *  linux/arch/arm/kernel/head.S
     *
     *  Copyright (C) 1994-2002 Russell King
     *  Copyright (c) 2003 ARM Limited
     *  All Rights Reserved
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License version 2 as
     * published by the Free Software Foundation.
     *
     *  Kernel startup code for all 32-bit CPUs
     */
    #include <linux/linkage.h>
    #include <linux/init.h>
    
    #include <asm/assembler.h>
    #include <asm/domain.h>
    #include <asm/ptrace.h>
    #include <asm/asm-offsets.h>
    #include <asm/memory.h>
    #include <asm/thread_info.h>
    #include <asm/system.h>
    #include <asm/pgtable.h>
    
    #ifdef CONFIG_DEBUG_LL
    #include <mach/debug-macro.S>
    #endif
    
    /*
    swapper_pg_dir是初始(第一个)页表的虚拟地址,放在KERNEL_RAM_VADDR下的16K空间。
    KERNEL_RAM_VADDR必须0x8000对齐,kernel在ram中的虚拟地址,一般为0xc0008000。
    */
    /*
     * swapper_pg_dir is the virtual address of the initial page table.
     * We place the page tables 16K below KERNEL_RAM_VADDR.  Therefore, we must
     * make sure that KERNEL_RAM_VADDR is correctly set.  Currently, we expect
     * the least significant 16 bits to be 0x8000, but we could probably
     * relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
     */
    #define KERNEL_RAM_VADDR    (PAGE_OFFSET + TEXT_OFFSET)
    #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
    #error KERNEL_RAM_VADDR must start at 0xXXXX8000
    #endif
    
    #define PG_DIR_SIZE    0x4000
    #define PMD_ORDER    2
    
        .globl    swapper_pg_dir
        .equ    swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE
    
        .macro    pgtbl, rd, phys
        add    
    d, phys, #TEXT_OFFSET - PG_DIR_SIZE
        .endm
    
    #ifdef CONFIG_XIP_KERNEL
    #define KERNEL_START    XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
    #define KERNEL_END    _edata_loc
    #else
    #define KERNEL_START    KERNEL_RAM_VADDR
    #define KERNEL_END    _end
    #endif
    
    /*
    内核运行条件:关闭MMU,关闭D-cache,I-cache无关,
    r0 = 0 
    r1 = machine nr
    r2 = atags or dtb指针 
    R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中
    并将这个地址传递给kernel以便在进入kernel后使用
    */
    /*
     * Kernel startup entry point.
     * ---------------------------
     *
     * This is normally called from the decompressor code.  The requirements
     * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
     * r1 = machine nr, r2 = atags or dtb pointer.
     *
     * This code is mostly position independent, so if you link the kernel at
     * 0xc0008000, you call this at __pa(0xc0008000).
     *
     * See linux/arch/arm/tools/mach-types for the complete list of machine
     * numbers for r1.
     *
     * We're trying to keep crap to a minimum; DO NOT add any machine specific
     * crap here - that's what the boot loader (or in extreme, well justified
     * circumstances, zImage) is for.
     */
        .arm
    
        __HEAD
    ENTRY(stext)
    
     THUMB(    adr    r9, BSYM(1f)    )    @ Kernel is always entered in ARM.
     THUMB(    bx    r9        )    @ If this is a Thumb-2 kernel,
     THUMB(    .thumb            )    @ switch to Thumb now.
     THUMB(1:            )
    
        setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
                            @ and irqs disabled
        mrc    p15, 0, r9, c0, c0        @ get processor id
        bl    __lookup_processor_type        @ r5=procinfo r9=cpuid
        movs    r10, r5                @ invalid processor (r5=0)?
     THUMB( it    eq )        @ force fixup-able long branch encoding
        beq    __error_p            @ yes, error 'p'
    
    #ifndef CONFIG_XIP_KERNEL
        adr    r3, 2f
        ldmia    r3, {r4, r8}
        sub    r4, r3, r4            @ (PHYS_OFFSET - PAGE_OFFSET)
        add    r8, r8, r4            @ PHYS_OFFSET
    #else
        ldr    r8, =PHYS_OFFSET        @ always constant in this case
    #endif
    
        /*
         * r1 = machine no, r2 = atags or dtb,
         * r8 = phys_offset, r9 = cpuid, r10 = procinfo
         */
        bl    __vet_atags
    #ifdef CONFIG_SMP_ON_UP
        bl    __fixup_smp
    #endif
    #ifdef CONFIG_ARM_PATCH_PHYS_VIRT
        bl    __fixup_pv_table
    #endif
        bl    __create_page_tables
    
        /*
         * The following calls CPU specific code in a position independent
         * manner.  See arch/arm/mm/proc-*.S for details.  r10 = base of
         * xxx_proc_info structure selected by __lookup_processor_type
         * above.  On return, the CPU will be ready for the MMU to be
         * turned on, and r0 will hold the CPU control register value.
         */
        ldr    r13, =__mmap_switched        @ address to jump to after
                            @ mmu has been enabled
        adr    lr, BSYM(1f)            @ return (PIC) address
        mov    r8, r4                @ set TTBR1 to swapper_pg_dir
     ARM(    add    pc, r10, #PROCINFO_INITFUNC    )
     THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )
     THUMB(    mov    pc, r12                )
    1:    b    __enable_mmu
    ENDPROC(stext)
        .ltorg
    #ifndef CONFIG_XIP_KERNEL
    2:    .long    .
        .long    PAGE_OFFSET
    #endif
    
    /************************************************************************/
    
    /*
    建立初始页表。仅仅建立能使内核运行的最小量页,映射在内核区。
    */
    /*
     * Setup the initial page tables.  We only setup the barest
     * amount which are required to get the kernel running, which
     * generally means mapping in the kernel code.
     *
     * r8 = phys_offset, r9 = cpuid, r10 = procinfo
     *
     * Returns:
     *  r0, r3, r5-r7 corrupted
     *  r4 = physical page table address
     */
    __create_page_tables:
        pgtbl    r4, r8                @ page table address
    
        /*
         * Clear the swapper page table
         */
        mov    r0, r4
        mov    r3, #0
        add    r6, r0, #PG_DIR_SIZE
    1:    str    r3, [r0], #4
        str    r3, [r0], #4
        str    r3, [r0], #4
        str    r3, [r0], #4
        teq    r0, r6
        bne    1b
    
        ldr    r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags
    
        /*
         * Create identity mapping to cater for __enable_mmu.
         * This identity mapping will be removed by paging_init().
         */
        adr    r0, __enable_mmu_loc
        ldmia    r0, {r3, r5, r6}
        sub    r0, r0, r3            @ virt->phys offset
        add    r5, r5, r0            @ phys __enable_mmu
        add    r6, r6, r0            @ phys __enable_mmu_end
        mov    r5, r5, lsr #SECTION_SHIFT
        mov    r6, r6, lsr #SECTION_SHIFT
    
    1:    orr    r3, r7, r5, lsl #SECTION_SHIFT    @ flags + kernel base
        str    r3, [r4, r5, lsl #PMD_ORDER]    @ identity mapping
        cmp    r5, r6
        addlo    r5, r5, #1            @ next section
        blo    1b
    
        /*
         * Now setup the pagetables for our kernel direct
         * mapped region.
         */
        mov    r3, pc
        mov    r3, r3, lsr #SECTION_SHIFT
        orr    r3, r7, r3, lsl #SECTION_SHIFT
        add    r0, r4,  #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
        str    r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]!
        ldr    r6, =(KERNEL_END - 1)
        add    r0, r0, #1 << PMD_ORDER
        add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
    1:    cmp    r0, r6
        add    r3, r3, #1 << SECTION_SHIFT
        strls    r3, [r0], #1 << PMD_ORDER
        bls    1b
    
    #ifdef CONFIG_XIP_KERNEL
        /*
         * Map some ram to cover our .data and .bss areas.
         */
        add    r3, r8, #TEXT_OFFSET
        orr    r3, r3, r7
        add    r0, r4,  #(KERNEL_RAM_VADDR & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
        str    r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> (SECTION_SHIFT - PMD_ORDER)]!
        ldr    r6, =(_end - 1)
        add    r0, r0, #4
        add    r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
    1:    cmp    r0, r6
        add    r3, r3, #1 << 20
        strls    r3, [r0], #4
        bls    1b
    #endif
    
    /*
    boot 参数地址在r2,或者ram的开始1MB空间(加入参数地址未指定)
    */
        /*
         * Then map boot params address in r2 or
         * the first 1MB of ram if boot params address is not specified.
         */
        mov    r0, r2, lsr #SECTION_SHIFT
        movs    r0, r0, lsl #SECTION_SHIFT
        moveq    r0, r8
        sub    r3, r0, r8
        add    r3, r3, #PAGE_OFFSET
        add    r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER)
        orr    r6, r7, r0
        str    r6, [r3]
    
    #ifdef CONFIG_DEBUG_LL
    #ifndef CONFIG_DEBUG_ICEDCC
        /*
         * Map in IO space for serial debugging.
         * This allows debug messages to be output
         * via a serial console before paging_init.
         */
        addruart r7, r3, r0
    
        mov    r3, r3, lsr #SECTION_SHIFT
        mov    r3, r3, lsl #PMD_ORDER
    
        add    r0, r4, r3
        rsb    r3, r3, #0x4000            @ PTRS_PER_PGD*sizeof(long)
        cmp    r3, #0x0800            @ limit to 512MB
        movhi    r3, #0x0800
        add    r6, r0, r3
        mov    r3, r7, lsr #SECTION_SHIFT
        ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
        orr    r3, r7, r3, lsl #SECTION_SHIFT
    1:    str    r3, [r0], #4
        add    r3, r3, #1 << SECTION_SHIFT
        cmp    r0, r6
        blo    1b
    
    #else /* CONFIG_DEBUG_ICEDCC */
        /* we don't need any serial debugging mappings for ICEDCC */
        ldr    r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
    #endif /* !CONFIG_DEBUG_ICEDCC */
    
    #if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
        /*
         * If we're using the NetWinder or CATS, we also need to map
         * in the 16550-type serial port for the debug messages
         */
        add    r0, r4, #0xff000000 >> (SECTION_SHIFT - PMD_ORDER)
        orr    r3, r7, #0x7c000000
        str    r3, [r0]
    #endif
    #ifdef CONFIG_ARCH_RPC
        /*
         * Map in screen at 0x02000000 & SCREEN2_BASE
         * Similar reasons here - for debug.  This is
         * only for Acorn RiscPC architectures.
         */
        add    r0, r4, #0x02000000 >> (SECTION_SHIFT - PMD_ORDER)
        orr    r3, r7, #0x02000000
        str    r3, [r0]
        add    r0, r4, #0xd8000000 >> (SECTION_SHIFT - PMD_ORDER)
        str    r3, [r0]
    #endif
    #endif
        mov    pc, lr
    ENDPROC(__create_page_tables)
        .ltorg
        .align
    __enable_mmu_loc:
        .long    .
        .long    __enable_mmu
        .long    __enable_mmu_end
    
    #if defined(CONFIG_SMP)
        __CPUINIT
    ENTRY(secondary_startup)
        /*
         * Common entry point for secondary CPUs.
         *
         * Ensure that we're in SVC mode, and IRQs are disabled.  Lookup
         * the processor type - there is no need to check the machine type
         * as it has already been validated by the primary processor.
         */
        setmode    PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9
        mrc    p15, 0, r9, c0, c0        @ get processor id
        bl    __lookup_processor_type
        movs    r10, r5                @ invalid processor?
        moveq    r0, #'p'            @ yes, error 'p'
     THUMB( it    eq )        @ force fixup-able long branch encoding
        beq    __error_p
    
        /*
         * Use the page tables supplied from  __cpu_up.
         */
        adr    r4, __secondary_data
        ldmia    r4, {r5, r7, r12}        @ address to jump to after
        sub    lr, r4, r5            @ mmu has been enabled
        ldr    r4, [r7, lr]            @ get secondary_data.pgdir
        add    r7, r7, #4
        ldr    r8, [r7, lr]            @ get secondary_data.swapper_pg_dir
        adr    lr, BSYM(__enable_mmu)        @ return address
        mov    r13, r12            @ __secondary_switched address
     ARM(    add    pc, r10, #PROCINFO_INITFUNC    ) @ initialise processor
                              @ (return control reg)
     THUMB(    add    r12, r10, #PROCINFO_INITFUNC    )
     THUMB(    mov    pc, r12                )
    ENDPROC(secondary_startup)
    
        /*
         * r6  = &secondary_data
         */
    ENTRY(__secondary_switched)
        ldr    sp, [r7, #4]            @ get secondary_data.stack
        mov    fp, #0
        b    secondary_start_kernel
    ENDPROC(__secondary_switched)
    
        .align
    
        .type    __secondary_data, %object
    __secondary_data:
        .long    .
        .long    secondary_data
        .long    __secondary_switched
    #endif /* defined(CONFIG_SMP) */
    
    
    
    /*
     * Setup common bits before finally enabling the MMU.  Essentially
     * this is just loading the page table pointer and domain access
     * registers.
     *
     *  r0  = cp#15 control register
     *  r1  = machine ID
     *  r2  = atags or dtb pointer
     *  r4  = page table pointer
     *  r9  = processor ID
     *  r13 = *virtual* address to jump to upon completion
     */
    __enable_mmu:
    #if defined(CONFIG_ALIGNMENT_TRAP) && __LINUX_ARM_ARCH__ < 6
        orr    r0, r0, #CR_A
    #else
        bic    r0, r0, #CR_A
    #endif
    #ifdef CONFIG_CPU_DCACHE_DISABLE
        bic    r0, r0, #CR_C
    #endif
    #ifdef CONFIG_CPU_BPREDICT_DISABLE
        bic    r0, r0, #CR_Z
    #endif
    #ifdef CONFIG_CPU_ICACHE_DISABLE
        bic    r0, r0, #CR_I
    #endif
        mov    r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | 
                  domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | 
                  domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | 
                  domain_val(DOMAIN_IO, DOMAIN_CLIENT))
        mcr    p15, 0, r5, c3, c0, 0        @ load domain access register
        mcr    p15, 0, r4, c2, c0, 0        @ load page table pointer
        b    __turn_mmu_on
    ENDPROC(__enable_mmu)
    
    /*
     * Enable the MMU.  This completely changes the structure of the visible
     * memory space.  You will not be able to trace execution through this.
     * If you have an enquiry about this, *please* check the linux-arm-kernel
     * mailing list archives BEFORE sending another post to the list.
     *
     *  r0  = cp#15 control register
     *  r1  = machine ID
     *  r2  = atags or dtb pointer
     *  r9  = processor ID
     *  r13 = *virtual* address to jump to upon completion
     *
     * other registers depend on the function called upon completion
     */
        .align    5
    __turn_mmu_on:
        mov    r0, r0
        mcr    p15, 0, r0, c1, c0, 0        @ write control reg
        mrc    p15, 0, r3, c0, c0, 0        @ read id reg
        mov    r3, r3
        mov    r3, r13
        mov    pc, r3
    __enable_mmu_end:
    ENDPROC(__turn_mmu_on)
    
    
    #ifdef CONFIG_SMP_ON_UP
        __INIT
    __fixup_smp:
        and    r3, r9, #0x000f0000    @ architecture version
        teq    r3, #0x000f0000        @ CPU ID supported?
        bne    __fixup_smp_on_up    @ no, assume UP
    
        bic    r3, r9, #0x00ff0000
        bic    r3, r3, #0x0000000f    @ mask 0xff00fff0
        mov    r4, #0x41000000
        orr    r4, r4, #0x0000b000
        orr    r4, r4, #0x00000020    @ val 0x4100b020
        teq    r3, r4            @ ARM 11MPCore?
        moveq    pc, lr            @ yes, assume SMP
    
        mrc    p15, 0, r0, c0, c0, 5    @ read MPIDR
        and    r0, r0, #0xc0000000    @ multiprocessing extensions and
        teq    r0, #0x80000000        @ not part of a uniprocessor system?
        moveq    pc, lr            @ yes, assume SMP
    
    __fixup_smp_on_up:
        adr    r0, 1f
        ldmia    r0, {r3 - r5}
        sub    r3, r0, r3
        add    r4, r4, r3
        add    r5, r5, r3
        b    __do_fixup_smp_on_up
    ENDPROC(__fixup_smp)
    
        .align
    1:    .word    .
        .word    __smpalt_begin
        .word    __smpalt_end
    
        .pushsection .data
        .globl    smp_on_up
    smp_on_up:
        ALT_SMP(.long    1)
        ALT_UP(.long    0)
        .popsection
    #endif
    
        .text
    __do_fixup_smp_on_up:
        cmp    r4, r5
        movhs    pc, lr
        ldmia    r4!, {r0, r6}
     ARM(    str    r6, [r0, r3]    )
     THUMB(    add    r0, r0, r3    )
    #ifdef __ARMEB__
     THUMB(    mov    r6, r6, ror #16    )    @ Convert word order for big-endian.
    #endif
     THUMB(    strh    r6, [r0], #2    )    @ For Thumb-2, store as two halfwords
     THUMB(    mov    r6, r6, lsr #16    )    @ to be robust against misaligned r3.
     THUMB(    strh    r6, [r0]    )
        b    __do_fixup_smp_on_up
    ENDPROC(__do_fixup_smp_on_up)
    
    ENTRY(fixup_smp)
        stmfd    sp!, {r4 - r6, lr}
        mov    r4, r0
        add    r5, r0, r1
        mov    r3, #0
        bl    __do_fixup_smp_on_up
        ldmfd    sp!, {r4 - r6, pc}
    ENDPROC(fixup_smp)
    
    #ifdef CONFIG_ARM_PATCH_PHYS_VIRT
    
    /* __fixup_pv_table - patch the stub instructions with the delta between
     * PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and
     * can be expressed by an immediate shifter operand. The stub instruction
     * has a form of '(add|sub) rd, rn, #imm'.
     */
        __HEAD
    __fixup_pv_table:
        adr    r0, 1f
        ldmia    r0, {r3-r5, r7}
        sub    r3, r0, r3    @ PHYS_OFFSET - PAGE_OFFSET
        add    r4, r4, r3    @ adjust table start address
        add    r5, r5, r3    @ adjust table end address
        add    r7, r7, r3    @ adjust __pv_phys_offset address
        str    r8, [r7]    @ save computed PHYS_OFFSET to __pv_phys_offset
        mov    r6, r3, lsr #24    @ constant for add/sub instructions
        teq    r3, r6, lsl #24 @ must be 16MiB aligned
    THUMB(    it    ne        @ cross section branch )
        bne    __error
        str    r6, [r7, #4]    @ save to __pv_offset
        b    __fixup_a_pv_table
    ENDPROC(__fixup_pv_table)
    
        .align
    1:    .long    .
        .long    __pv_table_begin
        .long    __pv_table_end
    2:    .long    __pv_phys_offset
    
        .text
    __fixup_a_pv_table:
    #ifdef CONFIG_THUMB2_KERNEL
        lsls    r6, #24
        beq    2f
        clz    r7, r6
        lsr    r6, #24
        lsl    r6, r7
        bic    r6, #0x0080
        lsrs    r7, #1
        orrcs    r6, #0x0080
        orr    r6, r6, r7, lsl #12
        orr    r6, #0x4000
        b    2f
    1:    add     r7, r3
        ldrh    ip, [r7, #2]
        and    ip, 0x8f00
        orr    ip, r6    @ mask in offset bits 31-24
        strh    ip, [r7, #2]
    2:    cmp    r4, r5
        ldrcc    r7, [r4], #4    @ use branch for delay slot
        bcc    1b
        bx    lr
    #else
        b    2f
    1:    ldr    ip, [r7, r3]
        bic    ip, ip, #0x000000ff
        orr    ip, ip, r6    @ mask in offset bits 31-24
        str    ip, [r7, r3]
    2:    cmp    r4, r5
        ldrcc    r7, [r4], #4    @ use branch for delay slot
        bcc    1b
        mov    pc, lr
    #endif
    ENDPROC(__fixup_a_pv_table)
    
    ENTRY(fixup_pv_table)
        stmfd    sp!, {r4 - r7, lr}
        ldr    r2, 2f            @ get address of __pv_phys_offset
        mov    r3, #0            @ no offset
        mov    r4, r0            @ r0 = table start
        add    r5, r0, r1        @ r1 = table size
        ldr    r6, [r2, #4]        @ get __pv_offset
        bl    __fixup_a_pv_table
        ldmfd    sp!, {r4 - r7, pc}
    ENDPROC(fixup_pv_table)
    
        .align
    2:    .long    __pv_phys_offset
    
        .data
        .globl    __pv_phys_offset
        .type    __pv_phys_offset, %object
    __pv_phys_offset:
        .long    0
        .size    __pv_phys_offset, . - __pv_phys_offset
    __pv_offset:
        .long    0
    #endif
    
    #include "head-common.S"
  • 相关阅读:
    Java并发(5)- ReentrantLock与AQS
    Java并发(4)- synchronized与CAS
    Windows cmd 查看文件MD5 SHA1 SHA256
    进程、线程、协程概念理解
    Python学习--Python运算符
    Python学习--Python变量类型
    MySQL性能优化
    Docket学习--Docker入门
    Python学习--Python基础语法
    Python学习--Python 环境搭建
  • 原文地址:https://www.cnblogs.com/embedded-linux/p/5861037.html
Copyright © 2020-2023  润新知