• Python pandas 入门 04 CSV 文件


    Pandas CSV 文件

    CSV(Comma-Separated Values,逗号分隔值,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文本)。

    CSV 是一种通用的、相对简单的文件格式,被用户、商业和科学广泛应用。

    Pandas 可以很方便的处理 CSV 文件,本文以 nba.csv 为例,你可以下载 nba.csv打开 nba.csv 查看。

    实例

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.to_string()) 

    to_string() 用于返回 DataFrame 类型的数据,如果不使用该函数,则输出结果为数据的前面 5 行和末尾 5 行,中间部分以 ... 代替。

    实例

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df) 
    输出结果为:
                  Name            Team  Number Position   Age Height  Weight            College     Salary
    0    Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas  7730337.0
    1      Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette  6796117.0
    2     John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University        NaN
    3      R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State  1148640.0
    4    Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN  5000000.0
    ..             ...             ...     ...      ...   ...    ...     ...                ...        ...
    453   Shelvin Mack       Utah Jazz     8.0       PG  26.0    6-3   203.0             Butler  2433333.0
    454      Raul Neto       Utah Jazz    25.0       PG  24.0    6-1   179.0                NaN   900000.0
    455   Tibor Pleiss       Utah Jazz    21.0        C  26.0    7-3   256.0                NaN  2900000.0
    456    Jeff Withey       Utah Jazz    24.0        C  26.0    7-0   231.0             Kansas   947276.0
    457            NaN             NaN     NaN      NaN   NaN    NaN     NaN                NaN        NaN

    我们也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:

    实例

    import pandas as pd
       
    # 三个字段 name, site, age
    nme = ["Google", "Run", "Taobao", "Wiki"]
    st = ["www.google.com", "www.Run.com", "www.taobao.com", "www.wikipedia.org"]
    ag = [90, 40, 80, 98]
       
    # 字典
    dict = {'name': nme, 'site': st, 'age': ag}
         
    df = pd.DataFrame(dict)
     
    # 保存 dataframe
    df.to_csv('site.csv')
    执行成功后,我们打开 site.csv 文件。

    数据处理

    head()

    head( n ) 方法用于读取前面的 n 行,如果不填参数 n ,默认返回 5 行。

    实例 - 读取前面 5 行

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.head())
    输出结果为:
                Name            Team  Number Position   Age Height  Weight            College     Salary
    0  Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas  7730337.0
    1    Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette  6796117.0
    2   John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University        NaN
    3    R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State  1148640.0
    4  Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN  5000000.0

    实例 - 读取前面 10 行

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.head(10))
    输出结果为:
                Name            Team  Number Position   Age Height  Weight            College      Salary
    0  Avery Bradley  Boston Celtics     0.0       PG  25.0    6-2   180.0              Texas   7730337.0
    1    Jae Crowder  Boston Celtics    99.0       SF  25.0    6-6   235.0          Marquette   6796117.0
    2   John Holland  Boston Celtics    30.0       SG  27.0    6-5   205.0  Boston University         NaN
    3    R.J. Hunter  Boston Celtics    28.0       SG  22.0    6-5   185.0      Georgia State   1148640.0
    4  Jonas Jerebko  Boston Celtics     8.0       PF  29.0   6-10   231.0                NaN   5000000.0
    5   Amir Johnson  Boston Celtics    90.0       PF  29.0    6-9   240.0                NaN  12000000.0
    6  Jordan Mickey  Boston Celtics    55.0       PF  21.0    6-8   235.0                LSU   1170960.0
    7   Kelly Olynyk  Boston Celtics    41.0        C  25.0    7-0   238.0            Gonzaga   2165160.0
    8   Terry Rozier  Boston Celtics    12.0       PG  22.0    6-2   190.0         Louisville   1824360.0
    9   Marcus Smart  Boston Celtics    36.0       PG  22.0    6-4   220.0     Oklahoma State   3431040.0

    tail()

    tail( n ) 方法用于读取尾部的 n 行,如果不填参数 n ,默认返回 5 行,空行各个字段的值返回 NaN

    实例 - 读取末尾 5 行

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.tail())

    输出结果为:

                 Name       Team  Number Position   Age Height  Weight College     Salary
    453  Shelvin Mack  Utah Jazz     8.0       PG  26.0    6-3   203.0  Butler  2433333.0
    454     Raul Neto  Utah Jazz    25.0       PG  24.0    6-1   179.0     NaN   900000.0
    455  Tibor Pleiss  Utah Jazz    21.0        C  26.0    7-3   256.0     NaN  2900000.0
    456   Jeff Withey  Utah Jazz    24.0        C  26.0    7-0   231.0  Kansas   947276.0
    457           NaN        NaN     NaN      NaN   NaN    NaN     NaN     NaN        NaN

    实例 - 读取末尾 10 行

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.tail(10))
    输出结果为:
                   Name       Team  Number Position   Age Height  Weight   College      Salary
    448  Gordon Hayward  Utah Jazz    20.0       SF  26.0    6-8   226.0    Butler  15409570.0
    449     Rodney Hood  Utah Jazz     5.0       SG  23.0    6-8   206.0      Duke   1348440.0
    450      Joe Ingles  Utah Jazz     2.0       SF  28.0    6-8   226.0       NaN   2050000.0
    451   Chris Johnson  Utah Jazz    23.0       SF  26.0    6-6   206.0    Dayton    981348.0
    452      Trey Lyles  Utah Jazz    41.0       PF  20.0   6-10   234.0  Kentucky   2239800.0
    453    Shelvin Mack  Utah Jazz     8.0       PG  26.0    6-3   203.0    Butler   2433333.0
    454       Raul Neto  Utah Jazz    25.0       PG  24.0    6-1   179.0       NaN    900000.0
    455    Tibor Pleiss  Utah Jazz    21.0        C  26.0    7-3   256.0       NaN   2900000.0
    456     Jeff Withey  Utah Jazz    24.0        C  26.0    7-0   231.0    Kansas    947276.0
    457             NaN        NaN     NaN      NaN   NaN    NaN     NaN       NaN         NaN

    info()

    info() 方法返回表格的一些基本信息:

    实例

    import pandas as pd
    
    df = pd.read_csv('nba.csv')
    
    print(df.info()) 
    输出结果为:
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 458 entries, 0 to 457          # 行数,458 行,第一行编号为 0
    Data columns (total 9 columns):            # 列数,9列
     #   Column    Non-Null Count  Dtype       # 各列的数据类型
    ---  ------    --------------  -----  
     0   Name      457 non-null    object 
     1   Team      457 non-null    object 
     2   Number    457 non-null    float64
     3   Position  457 non-null    object 
     4   Age       457 non-null    float64
     5   Height    457 non-null    object 
     6   Weight    457 non-null    float64
     7   College   373 non-null    object         # non-null,意思为非空的数据    
     8   Salary    446 non-null    float64
    dtypes: float64(4), object(5)                 # 类型

    non-null 为非空数据,我们可以看到上面的信息中,总共 458 行,College 字段的空值最多。

    REF

    https://www.runoob.com/pandas/pandas-csv-file.html

  • 相关阅读:
    Azureus 3.0.0.8
    KchmViewer 3.0
    GNOME 2.18.0 正式版颁发宣布
    Emacs 22.0.95
    gTwitter:Twitter 的 Linux 客户端
    KDE DVD Authoring Wizard-易用的 DVD 制造器材
    GIMP 2.3.15
    Monit-零碎看监工具
    Cobras-专注于 Qt 的 IDE
    K3b 1.0 正式版公布
  • 原文地址:https://www.cnblogs.com/emanlee/p/16021658.html
Copyright © 2020-2023  润新知