• Python numpy 入门系列 02 数据类型


    NumPy 数据类型

    numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。

    名称描述
    bool_ 布尔型数据类型(True 或者 False)
    int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64)
    intc 与 C 的 int 类型一样,一般是 int32 或 int 64
    intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64)
    int8 字节(-128 to 127)
    int16 整数(-32768 to 32767)
    int32 整数(-2147483648 to 2147483647)
    int64 整数(-9223372036854775808 to 9223372036854775807)
    uint8 无符号整数(0 to 255)
    uint16 无符号整数(0 to 65535)
    uint32 无符号整数(0 to 4294967295)
    uint64 无符号整数(0 to 18446744073709551615)
    float_ float64 类型的简写
    float16 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
    float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
    float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
    complex_ complex128 类型的简写,即 128 位复数
    complex64 复数,表示双 32 位浮点数(实数部分和虚数部分)
    complex128 复数,表示双 64 位浮点数(实数部分和虚数部分)

    numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。


    数据类型对象 (dtype)

    数据类型对象dtype是numpy.dtype类的实例。它可以使用numpy.dtype创建。到目前为止,我们在numpy数组的例子中只使用了基本的数字数据类型,如int和float。这些numpy数组仅包含同类数据类型。
    dtype对象还可以包括基本数据类型的组合。在dtype的帮助下,我们能够创建“结构化数组”(“Structured Arrays”),也称为“记录数组”(“Record Arrays”)。结构化数组使我们能够为每列提供不同的数据类型。它与excel或csv文档的结构相似。(https://blog.csdn.net/bai666ai/article/details/123045117)

    数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::

    • 数据的类型(整数,浮点数或者 Python 对象)
    • 数据的大小(例如, 整数使用多少个字节存储)
    • 数据的字节顺序(小端法或大端法)
    • 结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
    • 如果数据类型是子数组,那么它的形状和数据类型是什么。

    字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。

    大端模式 (big-endian)

    是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致。

    小端模式 (little-endian)

    是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。

     例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。

    对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。

    小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。

    dtype 对象是使用以下语法构造的:

    numpy.dtype(object, align, copy)
    • object - 要转换为的数据类型对象
    • align - 如果为 true,填充字段使其类似 C 的结构体。
    • copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用。

    实例

    接下来我们可以通过实例来理解。

    标量数据类型

    实例 1

    import numpy as np
    # 使用标量类型
    dt = np.dtype(np.int32)
    print(dt)
    输出结果为:
    int32

    实例 2

    import numpy as np
    # int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替
    dt = np.dtype('i4')
    print(dt)
    输出结果为:
    int32

    实例 3

    import numpy as np
    # 字节顺序标注
    dt = np.dtype('<i4') ##  < 意味着小端法
    print(dt)
    输出结果为:
    int32

    结构化数据类型

    可以把结构化的数组看为二维的表格,表格有若干列(字段),若干行(一行对应一个列表元素)。

    列的名称和数据类型可以用结构化数据类型。一行是一个元组。

    下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。

    实例 4

    # 首先创建结构化数据类型
    import numpy as np
    dt = np.dtype([('age',np.int8)])  # 字段名称 字段类型; 列表里面嵌套元组
    print(dt)

    输出结果为:

    [('age', 'i1')]

    实例 5

    # 将数据类型应用于 ndarray 对象
    import numpy as np
    dt = np.dtype([('age',np.int8)])  # 字段名称 字段类型; 列表里面嵌套元组
    a = np.array([(10,),(20,),(30,)], dtype = dt)  # 列表里面嵌套元组
    print(a)
    输出结果为:
    [(10,) (20,) (30,)]

    实例 6

    # 类型字段名可以用于存取实际的 age 列
    import numpy as np
    dt = np.dtype([('age',np.int8)]) # 字段名称 字段类型  # 列表里面嵌套元组
    a = np.array([(10,),(20,),(30,)], dtype = dt)   # 列表里面嵌套元组
    print(a['age'])
    输出结果为:
    [10 20 30]

    下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。

    实例 7

    import numpy as np
    student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) # 字段名称 字段类型  # 列表里面嵌套元组
    print(student)

    输出结果为:

    [('name', 'S20'), ('age', 'i1'), ('marks', 'f4')]

    实例 8

    import numpy as np
    student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) # 字段名称 字段类型 # 列表里面嵌套元组
    a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student)   # 列表里面嵌套元组
    print(a)

     输出结果为:

    [('abc', 21, 50.0), ('xyz', 18, 75.0)]

    示例:

    import numpy as np
    person=np.array([(1,"lisi",23,"man"),(2,"wangwu",26,"woman")], \
            dtype=[('id','i4'),('name', 'S20'),('age', 'i4'), ('sex', 'S10')])
    print(person['name'])        

    每个内建类型都有一个唯一定义它的字符代码,如下:

    字符对应类型
    b 布尔型
    i (有符号) 整型
    u 无符号整型 integer
    f 浮点型
    c 复数浮点型
    m timedelta(时间间隔)
    M datetime(日期时间)
    O (Python) 对象
    S, a (byte-)字符串
    U Unicode
    V 原始数据 (void)

    REF

    https://zhuanlan.zhihu.com/p/369993768 (NumPy之:结构化数组详解)

    https://vimsky.com/examples/usage/python-numpy.dtype.html

    https://www.runoob.com/numpy/numpy-dtype.html

    https://blog.csdn.net/bai666ai/article/details/123045117

  • 相关阅读:
    自动处理跨线程的相关操作-及异步调用方式
    备份/恢复SQLSERVER数据库,SQL一步实现
    WPF和WINFORM的互操作
    SQL笔记 [长期更新] (-2013.7)
    方法数超过65536上限
    【转载】Xutils3源码解析
    【转载】retrofit 2 源码解析
    【转载】okhttp源码解析
    禁止viewpager不可滚动
    可随意交换位置的gridview
  • 原文地址:https://www.cnblogs.com/emanlee/p/16019235.html
Copyright © 2020-2023  润新知