NumPy 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。
名称 | 描述 |
---|---|
bool_ | 布尔型数据类型(True 或者 False) |
int_ | 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) |
intc | 与 C 的 int 类型一样,一般是 int32 或 int 64 |
intp | 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) |
int8 | 字节(-128 to 127) |
int16 | 整数(-32768 to 32767) |
int32 | 整数(-2147483648 to 2147483647) |
int64 | 整数(-9223372036854775808 to 9223372036854775807) |
uint8 | 无符号整数(0 to 255) |
uint16 | 无符号整数(0 to 65535) |
uint32 | 无符号整数(0 to 4294967295) |
uint64 | 无符号整数(0 to 18446744073709551615) |
float_ | float64 类型的简写 |
float16 | 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 |
float32 | 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 |
float64 | 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 |
complex_ | complex128 类型的简写,即 128 位复数 |
complex64 | 复数,表示双 32 位浮点数(实数部分和虚数部分) |
complex128 | 复数,表示双 64 位浮点数(实数部分和虚数部分) |
numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。
数据类型对象 (dtype)
数据类型对象dtype是numpy.dtype类的实例。它可以使用numpy.dtype创建。到目前为止,我们在numpy数组的例子中只使用了基本的数字数据类型,如int和float。这些numpy数组仅包含同类数据类型。
dtype对象还可以包括基本数据类型的组合。在dtype的帮助下,我们能够创建“结构化数组”(“Structured Arrays”),也称为“记录数组”(“Record Arrays”)。结构化数组使我们能够为每列提供不同的数据类型。它与excel或csv文档的结构相似。(https://blog.csdn.net/bai666ai/article/details/123045117)
数据类型对象(numpy.dtype 类的实例)用来描述与数组对应的内存区域是如何使用,它描述了数据的以下几个方面::
- 数据的类型(整数,浮点数或者 Python 对象)
- 数据的大小(例如, 整数使用多少个字节存储)
- 数据的字节顺序(小端法或大端法)
- 在结构化类型的情况下,字段的名称、每个字段的数据类型和每个字段所取的内存块的部分
- 如果数据类型是子数组,那么它的形状和数据类型是什么。
字节顺序是通过对数据类型预先设定 < 或 > 来决定的。 < 意味着小端法(最小值存储在最小的地址,即低位组放在最前面)。> 意味着大端法(最重要的字节存储在最小的地址,即高位组放在最前面)。
大端模式 (big-endian)
是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中,这样的存储模式有点儿类似于把数据当作字符串顺序处理:地址由小向大增加,而数据从高位往低位放;这和我们的阅读习惯一致。
小端模式 (little-endian)
是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中,这种存储模式将地址的高低和数据位权有效地结合起来,高地址部分权值高,低地址部分权值低,和我们的逻辑方法一致。
例如一个16bit的short型x,在内存中的地址为0x0010,x的值为0x1122,那么0x11为高字节,0x22为低字节。
对于大端模式,就将0x11放在低地址中,即0x0010中,0x22放在高地址中,即0x0011中。
小端模式,刚好相反。我们常用的X86结构是小端模式,而KEIL C51则为大端模式。很多的ARM,DSP都为小端模式。
dtype 对象是使用以下语法构造的:
numpy.dtype(object, align, copy)
- object - 要转换为的数据类型对象
- align - 如果为 true,填充字段使其类似 C 的结构体。
- copy - 复制 dtype 对象 ,如果为 false,则是对内置数据类型对象的引用。
实例
接下来我们可以通过实例来理解。
标量数据类型
实例 1
import numpy as np # 使用标量类型 dt = np.dtype(np.int32) print(dt)
int32
实例 2
import numpy as np # int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替 dt = np.dtype('i4') print(dt)
int32
实例 3
import numpy as np # 字节顺序标注 dt = np.dtype('<i4') ## < 意味着小端法 print(dt)
int32
结构化数据类型
可以把结构化的数组看为二维的表格,表格有若干列(字段),若干行(一行对应一个列表元素)。
列的名称和数据类型可以用结构化数据类型。一行是一个元组。
下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。
实例 4
# 首先创建结构化数据类型 import numpy as np dt = np.dtype([('age',np.int8)]) # 字段名称 字段类型; 列表里面嵌套元组 print(dt)
输出结果为:
[('age', 'i1')]
实例 5
# 将数据类型应用于 ndarray 对象 import numpy as np dt = np.dtype([('age',np.int8)]) # 字段名称 字段类型; 列表里面嵌套元组 a = np.array([(10,),(20,),(30,)], dtype = dt) # 列表里面嵌套元组 print(a)
[(10,) (20,) (30,)]
实例 6
# 类型字段名可以用于存取实际的 age 列 import numpy as np dt = np.dtype([('age',np.int8)]) # 字段名称 字段类型 # 列表里面嵌套元组 a = np.array([(10,),(20,),(30,)], dtype = dt) # 列表里面嵌套元组 print(a['age'])
[10 20 30]
下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。
实例 7
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) # 字段名称 字段类型 # 列表里面嵌套元组 print(student)
输出结果为:
[('name', 'S20'), ('age', 'i1'), ('marks', 'f4')]
实例 8
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) # 字段名称 字段类型 # 列表里面嵌套元组 a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) # 列表里面嵌套元组 print(a)
输出结果为:
[('abc', 21, 50.0), ('xyz', 18, 75.0)]
示例:
import numpy as np person=np.array([(1,"lisi",23,"man"),(2,"wangwu",26,"woman")], \ dtype=[('id','i4'),('name', 'S20'),('age', 'i4'), ('sex', 'S10')]) print(person['name'])
每个内建类型都有一个唯一定义它的字符代码,如下:
字符 | 对应类型 |
---|---|
b | 布尔型 |
i | (有符号) 整型 |
u | 无符号整型 integer |
f | 浮点型 |
c | 复数浮点型 |
m | timedelta(时间间隔) |
M | datetime(日期时间) |
O | (Python) 对象 |
S, a | (byte-)字符串 |
U | Unicode |
V | 原始数据 (void) |
REF
https://zhuanlan.zhihu.com/p/369993768 (NumPy之:结构化数组详解)
https://vimsky.com/examples/usage/python-numpy.dtype.html
https://www.runoob.com/numpy/numpy-dtype.html
https://blog.csdn.net/bai666ai/article/details/123045117