R, Python, and bash
In summary, for wet-lab people who want to add bioinformatics to their toolbox, focus on learning R first and applying it to your own work. For people who want to focus on bioinformatics as a career and make their own tools too, I would actually recommend learning the trifecta of R, Python, and Bash, though you could get away with choosing between R and Python as long as you still learn Bash too. I can go into more depth on any of these topics or give an introduction to any of these languages if you let me know in the comments.
Other programming languages
There are many other languages out there, so before I end here I’m going to give a brief reason why these are not recommended for bioinformatics, beginners, or anyone at all in some cases.
C and C++
C or C++ are great for making super optimized command-line tools like aligners and variant-callers, but you will have a much easier time learning Python first and then going to these high-performance languages for a particular problem in the future, since they are harder to learn, more finicky, and take a lot more code to do the same thing.
Perl
Perl is still what a lot of people use, but it is fading out of use because Python accomplishes the same tasks and is easier to write code for, especially for beginners.
Ruby
Ruby is one of those hot languages right now, for good reason largely because of the power of Ruby on Rails for making database-driven web applications like blogs or twitter. Ruby however is not great for bioinformatics because it lacks the community support in terms of packages that R and Python have, so you would be better off learning Python instead of Ruby.
JavaScript or PHP
JavaScript and PHP are great languages for web applications, but bioinformatics web applications should never be your first project. You could make a computational method in Python or R and then later make it into a web application, but that is not a project for a beginner. HTML and CSS by the way are not programming languages, but actually markup and styling languages that you will use along with JavaScript and PHP for that web application someday.
Java
Java is a popular language that most people have heard of. In bioinformatics, a notable example is the genome browser IGV. However, I would not recommend for beginners to learn Java due to many issues including memory management and that Python and R have many more bioinformaticians who build packages and answer questions online.
That’s all I have to say about bioinformatics programming languages for now. If you want to see more videos like this about bioinformatics, then make sure to subscribe on YouTube and sign up for updates below to get new videos, guides, and scripts about bioinformatics delivered to your email inbox every week.
----------
Be this as it may – for me, this test showed that python and R are still a pragmatic choice of programming language for everyday Bioinformatics tasks
----------
For biological background graduates, Python and R should be the best languages to learn.
----------
No, nothing of sorts could ever happen.
- R has more advanced statistical functionality than Python will ever have - the packages that you list implement a tiny subset of what already exists in R
- R has better visualization capabilities than Python will ever have
- R has a better cross platform compatibility than Python will ever have
- R has better automated package installation than Python has (and likely will ever have)
- The userbase for R as a statistics language is gigantic compared to the number of users that use Python for data analysis
The downside of R is that it is both eclectic and byzantine.
Python is a generic programming language and it is great at that. But it is not a data analysis platform nor are the lead developers focusing on addressing the issues above.
And I am saying this as someone that uses Python almost exclusively for data analysis and most of my work.
----------
Python (with NumPy, SciPy, and StatPy) already has a big share among data analysis software. You can almost find equivalent functionality to Matlab/Octave and R, however those Python tools are still a little bit in their infancy. I mean, R and Matlab/Octave exist for many decades and have been originally geared to those data analysis functions...and of course they developed over the years to become even better. Python's data analysis capabilities are quite new, and it might take a while until they are on the same level, or become even better.
But I am very optimistic that Python will evolve to be one of the best data analysis packages one day. The Python community is very enthusiastic, creative, and productive, and in my opinion it is just a matter of time. However, I think R and Matlab/Octave will never cease to exist. They will find their niche, just like Fortran & Co.
----------
If you implement a new bioinformatics/biostatistics algorithm I think Python gives much more flexibility in programming. It is easier to implement those algorithms in Python since it is a general purpose language and it has a nice syntax, lots of useful language construction. R is pretty bound to table data manipulations but the base of statistics algorithms in it is really impressive.
So people often use combination of R/Python (like here http://cistrome.org/Cistrome/Cistrome_Project.html). When they use Python for algorithm implementations, input/ouput manipulations and R for plotting, running statistics or for Bioconudctor packages.
----------
I believe Python will take over. It won't be easy as there is a lot convincing to do and algorithms to port. The no so secret weapons Python has are Pandas and the IPython Notebook.
Take a look at this video introduction and see if you agree with me.
10-minute tour of pandas
Feel free to follow on using the available notebook viewer.
----------
Whenever we talk around learning bioinformatics, this is valuable to distribute the student up in to two sets the ones who do not want toward make their individual software plus the one who do. Together of the groups would do data study, run statistical trials, make plots, plus use bioinformatics software prepared by other inventers? However, second group would also create their specific bioinformatics app for the communal to usage. If you requisite toward make some focused script for your specific study and hire freelance services for your projects, however you are not issuing anything for further investigators in your field to usage, at that time you are in first group. Perl: Flexible, by a global repository (CPAN), thus it is small install new modules. It has Bio per, one of the first biological unit repositories that upsurge the usability from, for instance, change setups to do the phylogenetic investigation. There are several biological software those usages Perl such as GBrowse thus might be an exciting language if you need toward interact with it. Good test units Perl is still what a lot of persons use, but it is declining out of use since Python accomplishes the similar tasks and is easier toward write code for, particularly for beginners. Python: Influential, flexible, plus easy to use, Python is a perfect language for constructing software tools plus applications for life science study and development. Bioinformatics Programming Using Python is faultless for anybody involved with bioinformatics investigators, support staff, students, as well as software developers fascinated in writing bioinformatics apps. You will find it valuable whether you by now use Python, write code in the additional language, and otherwise have no programming experience whatsoever. It’s an outstanding self-instruction tool, in addition to a convenient reference while facing the challenges of real-life programming jobs. Clear language. Typically there is only one method to program with Python. “The correct one”. It is simple plus stable. Biopython does not have as numerous modules as Bioperl, but they work. The Python language was intended to be as simple plus accessible as likely, without giving up any of the power required to develop stylish applications. Python’s clean, steady syntax leaves it free from the delicacies and nuances that could make additional languages hard to learn and programs written in those languages hard to comprehend. Python’s vibrant nature adds to its convenience. For instance, Python does not require you to declare variables beforehand you use them, and the similar variable can mention to objects of different kinds over the course of its presence. Python can be moreover be used interactively, permitting you to explain yourself with the language of any Python units in an interactive term where each command produces instant results. You can hire freelancers for Best Programming Languages for Bioinformatics R: It is a statistical programming language, thus it opens a world of analysis, from t-test toward PCA plus clustering. If you are going to do RNAseq study may be vital if you don’t want to use paid software since 75% of RNAseq statistical sets are from Bioconductor (biological software repository for R). For instance, CummeRbund is an R package toward analyzing the outcomes from Cufflinks (a program toward calculating expression for RNAseq trials). It has the central repository (CRAN) thus install packages is easy. Graphs, graphs are just great with R. It has R-studio that is atmosphere software to usage R in a Matlab fashion. In brief, for persons who want toward add bioinformatics toward their toolbox, emphasis on education R first plus applying it toward your specific work. For persons who want toward the emphasis upon bioinformatics as vocation plus make their individual tools too, I would really commend learning trifecta of Python, R, plus Bash; however you might get away with selecting among R plus Python provided that you still study Bash too. R is free plus open source programming language that yields attractive graphics.R language is extensively used among the numerical community plus more lately in the data science as well as machine learning communal as well. Because of this fact, this has hire freelancers in recent ages as a stage for displaying plus delivering operative and applied BI. C and C++ C and C++ are excessive for making wonderful enhanced command-line tool similar aligners plus variant-callers, however you would have much calmer time education Python first in addition to then going toward the high-performance language for a specific problematic in the future, meanwhile they are firmer toward learn, fussier, and take lots of additional code toward do the similar thing. Ruby Ruby is the hot language currently, for good cause largely owing to the control of Ruby on Rail for creating database-driven web apps like blogs otherwise twitter. Ruby, however, is not excessive for bioinformatics since it lacks communal support in term of package that R plus Python have, thus you will be more affluent learning Python in its place of Ruby. PHPandJavaScript JavaScript plus PHP are excessive language for web application; however, bioinformatics web application must never remain your first job. You might make computational technique in Python otherwise R plus then late create it into a web app; however that is not a mission for a novice. HTML plus CSS incidentally are not programming language, however actually markup plus styling language that you wouldusageaccompanied by JavaScript plus PHP for the web appsometime. You can hire freelance services for Best Programming Languages for Bioinformatics Java language Java is widespread language that maximum persons have perceived of. In bioinformatics, distinguished instance is genome browser IGV. Though, I will not commend for novicestoward learn Java because of many issues counting memory management, as well as that Python plus R, have several more bioinformatician who construct packages and response questions online. SQL Microsoft SQL would help as data warehouses for instances that we would through BI Tools. Microsoft SQL is comparatively simple toward install plus set up also this is free toward download. Moreover, there are instance database that configure flawlessly with it, for instance, Adventure Works database. That is all I have toward say around bioinformatics languages for the time being.
Read more at: https://www.freelancinggig.com/blog/2017/07/19/best-programming-languages-bioinformatics/
REF
https://www.freelancinggig.com/blog/2017/07/19/best-programming-languages-bioinformatics/