引自:http://hi.baidu.com/sige_online/blog/item/d8fdfffc8f0033f7fd037fac.html
下面将通过几个简单的运算例子介绍SSE intrinsic的使用。首先,使用SSE需要一个新的头文件
#include <xmmintrin.h>
里面定义了一个新的数据类型,__m128,这是一个128位、4个32位单精度浮点数的结构,如果你正在使用VC.net,你会看到它是一个关键字,被当作一种基本数据类型。要是你不打算使用汇编SSE,那么就没必要深究编译器在幕后到底如何处理__m128类型的数据,你只需要知道里面能存放四个float,而这四个float可以进行并行运算。
在定义了__m128后,文件声明一大堆对__m128进行运算的函数,如_mm_add_ps、_mm_sub_ps等等,这就是SSE运算指令的声明。使用SSE优化在这些声明的帮助下变得非常简单,如计算两个向量之和,平时需要每一个元素进行一次加法运算,现在只需要简单地:
__m
c = _mm_add_ps( a , b );
这样等价于:
float a[4] , b[4] , c[4];
for( int i = 0 ; i < 4 ; ++ i )
c[i] = a[i] + b[i];
但前者的运算是并行的,在一般情况下效率远比后者要高。况且在描述复杂的运算的时候,如:
a = b * c + d / e;
则可以直接写成:
__m
咋看之下,很多效率至上的人马上就会大叫“昂贵的函数调用啊!Bad smell code!”。其实我正要告诉你,我也是效率至上派的。前面已经说过了,这些看上去貌似函数的调用实际上并非函数,而是所谓intrinsic,它们在编译优化中将被解释为单条或多条SSE指令,而且编译器会自动调节调用顺序以使其最大并行效率。
不过除了直接使用这些intrinsic以外,我们还可以把它们封装到类里面,重载运算符,这样就可以把运算写成可读性更强的算术式。如果你不愿意自己动手封装,也可以使用Intel封装好了的F32vec4类,它提供了完备的运算符重载,完全使用SSE,非常方便。
虽然Intel封装好的类已经很完善了,但还有一大堆数学运算需要我们自己动手进行编写,如内积(点积)和外积(叉积)。
首先来看一个比较实用的运算,求倒数。求倒数在很多数学库里都有专门的优化,通常原理都是先求出一个近似值,然后通过Newton-Raphson逼近法求出较精确值,下面的代码摘自NV的fastmath.cpp:
#define FP_ONE_BITS 0x
// r = 1/p
#define FP_INV(r,p) \
{ \
int _i = 2 * FP_ONE_BITS - *(int *)&(p); \
r = *(float *)&_i; \
r = r * (
}
而在SSE里也提供了两条求倒数的指令rcpss/rcpps(对应的intrinsic是_mm_rcp_ss与_mm_rcp_ps),不过这两条指令求的并非是精确值,而是近似值,所以我们需要对它的结果进行逼近处理。
float __rcp<float>( const float& a ) {
register float r;
__m128 rcp = _mm_load_ss( &a );
rcp = _mm_rcp_ss( rcp );
_mm_store_ss( &r, rcp );
/* [2 * rcpps(x) - (x * rcpps(x) * rcpps(x))]*/
r = 2.0f * r - ( a * r * r );
return r;
}