• QEMU ELF_LOAER分析[基于MIPS]


    本文用于记录对QEMU对ELF文件加载函数进行分析。根据“函数使用->函数定义->函数实现->函数实现的分析”的顺序进行分析,最终提取出ELF文件加载的代码。

    1. load_elf

    mips malta中,对load_elf的使用如下:

        if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,                                                                                  
                     (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
                     big_endian, ELF_MACHINE, 1) < 0) { 
            fprintf(stderr, "qemu: could not load kernel '%s'
    ",
                    loaderparams.kernel_filename);
            exit(1);
        }    

    load_elf在头文件include/hw/loader.h中,函数定义如下: 

    int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t), 
                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 
                 uint64_t *highaddr, int big_endian, int elf_machine, 
                 int clear_lsb); 

    load_elf的具体实现在hw/core/loader.c中,函数体如下:

    int load_elf(const char *filename, uint64_t (*translate_fn)(void *, uint64_t),                                                                                                                                     
                 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
                 uint64_t *highaddr, int big_endian, int elf_machine, int clear_lsb)
    {
        int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED;
        uint8_t e_ident[EI_NIDENT];
    
        fd = open(filename, O_RDONLY | O_BINARY);
        if (fd < 0) {
            perror(filename);
            return -1;
        }
        if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
            goto fail;
        if (e_ident[0] != ELFMAG0 ||
            e_ident[1] != ELFMAG1 ||
            e_ident[2] != ELFMAG2 ||
            e_ident[3] != ELFMAG3) {
            ret = ELF_LOAD_NOT_ELF;
            goto fail;
        }
    #ifdef HOST_WORDS_BIGENDIAN
        data_order = ELFDATA2MSB;
    #else
        data_order = ELFDATA2LSB;
    #endif
        must_swab = data_order != e_ident[EI_DATA];
        if (big_endian) {
            target_data_order = ELFDATA2MSB;
        } else {
            target_data_order = ELFDATA2LSB;
        }
    
        if (target_data_order != e_ident[EI_DATA]) {
            ret = ELF_LOAD_WRONG_ENDIAN;
            goto fail;
        }
    
        lseek(fd, 0, SEEK_SET);
        if (e_ident[EI_CLASS] == ELFCLASS64) {
            ret = load_elf64(filename, fd, translate_fn, translate_opaque, must_swab,
                             pentry, lowaddr, highaddr, elf_machine, clear_lsb);
        } else {
            ret = load_elf32(filename, fd, translate_fn, translate_opaque, must_swab,
                             pentry, lowaddr, highaddr, elf_machine, clear_lsb);
        }
    
     fail:
        close(fd);
        return ret;
    }

    在load_elf中,对elf文件进行读取分析的核心函数为load_elf64和load_elf32,下面将把它们进行展开。

    2、load_elf64/load_elf32

    load_elf64和load_elf32是通过glue(load_elf, SZ)来进行定义的,所在文件include/hw/elf_ops.h,具体函数如下:

    static int glue(load_elf, SZ)(const char *name, int fd, 
                                  uint64_t (*translate_fn)(void *, uint64_t), 
                                  void *translate_opaque, 
                                  int must_swab, uint64_t *pentry, 
                                  uint64_t *lowaddr, uint64_t *highaddr, 
                                  int elf_machine, int clear_lsb) 
    { 
        struct elfhdr ehdr; 
        struct elf_phdr *phdr = NULL, *ph; 
        int size, i, total_size; 
        elf_word mem_size, file_size; 
        uint64_t addr, low = (uint64_t)-1, high = 0; 
        uint8_t *data = NULL; 
        char label[128]; 
        int ret = ELF_LOAD_FAILED; 
     
        if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr)) 
            goto fail; 
        if (must_swab) { 
            glue(bswap_ehdr, SZ)(&ehdr); 
        } 
     
        switch (elf_machine) { 
            case EM_PPC64: 
                if (EM_PPC64 != ehdr.e_machine) 
                    if (EM_PPC != ehdr.e_machine) { 
                        ret = ELF_LOAD_WRONG_ARCH; 
                        goto fail; 
                    } 
                break; 
            case EM_X86_64: 
                if (EM_X86_64 != ehdr.e_machine) 
                    if (EM_386 != ehdr.e_machine) { 
                        ret = ELF_LOAD_WRONG_ARCH; 
                        goto fail; 
                    } 
                break; 
            case EM_MICROBLAZE: 
                if (EM_MICROBLAZE != ehdr.e_machine) 
                    if (EM_MICROBLAZE_OLD != ehdr.e_machine) { 
                        ret = ELF_LOAD_WRONG_ARCH; 
                        goto fail; 
                    } 
                break; 
            default: 
                if (elf_machine != ehdr.e_machine) { 
                    ret = ELF_LOAD_WRONG_ARCH; 
                    goto fail; 
                } 
        } 
     
        if (pentry) 
        *pentry = (uint64_t)(elf_sword)ehdr.e_entry; 
     
        glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb); 
     
        size = ehdr.e_phnum * sizeof(phdr[0]); 
        if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) { 
            goto fail; 
        } 
        phdr = g_malloc0(size); 
        if (!phdr) 
            goto fail; 
        if (read(fd, phdr, size) != size) 
            goto fail; 
        if (must_swab) { 
            for(i = 0; i < ehdr.e_phnum; i++) { 
                ph = &phdr[i]; 
                glue(bswap_phdr, SZ)(ph); 
            } 
        } 
     
        total_size = 0; 
        for(i = 0; i < ehdr.e_phnum; i++) { 
            ph = &phdr[i]; 
            if (ph->p_type == PT_LOAD) { 
                mem_size = ph->p_memsz; /* Size of the ROM */ 
                file_size = ph->p_filesz; /* Size of the allocated data */ 
                data = g_malloc0(file_size); 
                if (ph->p_filesz > 0) { 
                    if (lseek(fd, ph->p_offset, SEEK_SET) < 0) { 
                        goto fail; 
                    } 
                    if (read(fd, data, file_size) != file_size) { 
                        goto fail; 
                    } 
                } 
                /* address_offset is hack for kernel images that are 
                   linked at the wrong physical address.  */ 
                if (translate_fn) { 
                    addr = translate_fn(translate_opaque, ph->p_paddr); 
                    glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn, 
                                        translate_opaque, data, ph, elf_machine); 
                } else { 
                    addr = ph->p_paddr; 
                } 
     
                /* the entry pointer in the ELF header is a virtual 
                 * address, if the text segments paddr and vaddr differ 
                 * we need to adjust the entry */ 
                if (pentry && !translate_fn && 
                        ph->p_vaddr != ph->p_paddr && 
                        ehdr.e_entry >= ph->p_vaddr && 
                        ehdr.e_entry < ph->p_vaddr + ph->p_filesz && 
                        ph->p_flags & PF_X) { 
                    *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr; 
                } 
     
                snprintf(label, sizeof(label), "phdr #%d: %s", i, name); 
     
                /* rom_add_elf_program() seize the ownership of 'data' */ 
                rom_add_elf_program(label, data, file_size, mem_size, addr); 
     
                total_size += mem_size; 
                if (addr < low) 
                    low = addr; 
                if ((addr + mem_size) > high) 
                    high = addr + mem_size; 
     
                data = NULL; 
            } 
        } 
        g_free(phdr); 
        if (lowaddr) 
            *lowaddr = (uint64_t)(elf_sword)low; 
        if (highaddr) 
            *highaddr = (uint64_t)(elf_sword)high; 
        return total_size; 
     fail: 
        g_free(data); 
        g_free(phdr); 
        return ret; 
    } 

    其中,glue在文件include/qemu/compiler.h中,定义如下:

    #ifndef glue
    #define xglue(x, y) x ## y
    #define glue(x, y) xglue(x, y)
    #define stringify(s)    tostring(s)                                                                                                                                                  
    #define tostring(s) #s
    #endif
    

     根据定义,我们可以知道,“glue(load_elf, SZ)”经过展开,会变成“load_elfSZ”,当SZ为32和64的时候,结果就是load_elf32和load_elf64了。

    在文件hw/core/loader.c中,

    #define SZ      32
    #define elf_word        uint32_t
    #define elf_sword        int32_t
    #define bswapSZs    bswap32s
    #include "hw/elf_ops.h"
    
    #undef elfhdr
    #undef elf_phdr
    #undef elf_shdr
    #undef elf_sym
    #undef elf_rela
    #undef elf_note
    #undef elf_word
    #undef elf_sword
    #undef bswapSZs
    #undef SZ
    #define elfhdr      elf64_hdr
    #define elf_phdr    elf64_phdr
    #define elf_note    elf64_note
    #define elf_shdr    elf64_shdr
    #define elf_sym     elf64_sym
    #define elf_rela        elf64_rela
    #define elf_word        uint64_t
    #define elf_sword        int64_t
    #define bswapSZs    bswap64s
    #define SZ      64
    #include "hw/elf_ops.h"

    我们可以看到,loader.c在包涵elf_ops.h的时候,先对SZ等进行了宏定义。通过两次宏定义和包含,就得到了load_elf32和load_elf64。

    在glue(load_elf, SZ)中,使用了以下4个函数:

    glue(bswap_ehdr, SZ)(&ehdr);
    
    glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb);
    
    glue(bswap_phdr, SZ)(ph);
    
    glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn,                                                                         
                        translate_opaque, data, ph, elf_machine);

    它们都在文件include/hw/elf_ops.h中。elf_ops.h中的其它函数也会在解析elf文件时用到,所以我们将elf_ops.h全部贴出来

    3、 include/hw/elf_ops.h,文件内容如下:

    static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
    {
        bswap16s(&ehdr->e_type);			/* Object file type */
        bswap16s(&ehdr->e_machine);		/* Architecture */
        bswap32s(&ehdr->e_version);		/* Object file version */
        bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
        bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
        bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
        bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
        bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
        bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
        bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
        bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
        bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
        bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
    }
    
    static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
    {
        bswap32s(&phdr->p_type);			/* Segment type */
        bswapSZs(&phdr->p_offset);		/* Segment file offset */
        bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
        bswapSZs(&phdr->p_paddr);		/* Segment physical address */
        bswapSZs(&phdr->p_filesz);		/* Segment size in file */
        bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
        bswap32s(&phdr->p_flags);		/* Segment flags */
        bswapSZs(&phdr->p_align);		/* Segment alignment */
    }
    
    static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
    {
        bswap32s(&shdr->sh_name);
        bswap32s(&shdr->sh_type);
        bswapSZs(&shdr->sh_flags);
        bswapSZs(&shdr->sh_addr);
        bswapSZs(&shdr->sh_offset);
        bswapSZs(&shdr->sh_size);
        bswap32s(&shdr->sh_link);
        bswap32s(&shdr->sh_info);
        bswapSZs(&shdr->sh_addralign);
        bswapSZs(&shdr->sh_entsize);
    }
    
    static void glue(bswap_sym, SZ)(struct elf_sym *sym)
    {
        bswap32s(&sym->st_name);
        bswapSZs(&sym->st_value);
        bswapSZs(&sym->st_size);
        bswap16s(&sym->st_shndx);
    }
    
    static void glue(bswap_rela, SZ)(struct elf_rela *rela)
    {
        bswapSZs(&rela->r_offset);
        bswapSZs(&rela->r_info);
        bswapSZs((elf_word *)&rela->r_addend);
    }
    
    static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
                                                   int n, int type)
    {
        int i;
        for(i=0;i<n;i++) {
            if (shdr_table[i].sh_type == type)
                return shdr_table + i;
        }
        return NULL;
    }
    
    static int glue(symfind, SZ)(const void *s0, const void *s1)
    {
        hwaddr addr = *(hwaddr *)s0;
        struct elf_sym *sym = (struct elf_sym *)s1;
        int result = 0;
        if (addr < sym->st_value) {
            result = -1;
        } else if (addr >= sym->st_value + sym->st_size) {
            result = 1;
        }
        return result;
    }
    
    static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
                                               hwaddr orig_addr)
    {
        struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
        struct elf_sym *sym;
    
        sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
                      glue(symfind, SZ));
        if (sym != NULL) {
            return s->disas_strtab + sym->st_name;
        }
    
        return "";
    }
    
    static int glue(symcmp, SZ)(const void *s0, const void *s1)
    {
        struct elf_sym *sym0 = (struct elf_sym *)s0;
        struct elf_sym *sym1 = (struct elf_sym *)s1;
        return (sym0->st_value < sym1->st_value)
            ? -1
            : ((sym0->st_value > sym1->st_value) ? 1 : 0);
    }
    
    static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
                                      int clear_lsb)
    {
        struct elf_shdr *symtab, *strtab, *shdr_table = NULL;
        struct elf_sym *syms = NULL;
        struct syminfo *s;
        int nsyms, i;
        char *str = NULL;
    
        shdr_table = load_at(fd, ehdr->e_shoff,
                             sizeof(struct elf_shdr) * ehdr->e_shnum);
        if (!shdr_table)
            return -1;
    
        if (must_swab) {
            for (i = 0; i < ehdr->e_shnum; i++) {
                glue(bswap_shdr, SZ)(shdr_table + i);
            }
        }
    
        symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
        if (!symtab)
            goto fail;
        syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
        if (!syms)
            goto fail;
    
        nsyms = symtab->sh_size / sizeof(struct elf_sym);
    
        i = 0;
        while (i < nsyms) {
            if (must_swab)
                glue(bswap_sym, SZ)(&syms[i]);
            /* We are only interested in function symbols.
               Throw everything else away.  */
            if (syms[i].st_shndx == SHN_UNDEF ||
                    syms[i].st_shndx >= SHN_LORESERVE ||
                    ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
                nsyms--;
                if (i < nsyms) {
                    syms[i] = syms[nsyms];
                }
                continue;
            }
            if (clear_lsb) {
                /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
                syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
            }
            i++;
        }
        syms = g_realloc(syms, nsyms * sizeof(*syms));
    
        qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
        for (i = 0; i < nsyms - 1; i++) {
            if (syms[i].st_size == 0) {
                syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
            }
        }
    
        /* String table */
        if (symtab->sh_link >= ehdr->e_shnum)
            goto fail;
        strtab = &shdr_table[symtab->sh_link];
    
        str = load_at(fd, strtab->sh_offset, strtab->sh_size);
        if (!str)
            goto fail;
    
        /* Commit */
        s = g_malloc0(sizeof(*s));
        s->lookup_symbol = glue(lookup_symbol, SZ);
        glue(s->disas_symtab.elf, SZ) = syms;
        s->disas_num_syms = nsyms;
        s->disas_strtab = str;
        s->next = syminfos;
        syminfos = s;
        g_free(shdr_table);
        return 0;
     fail:
        g_free(syms);
        g_free(str);
        g_free(shdr_table);
        return -1;
    }
    
    static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
                                   uint64_t (*translate_fn)(void *, uint64_t),
                                   void *translate_opaque, uint8_t *data,
                                   struct elf_phdr *ph, int elf_machine)
    {
        struct elf_shdr *reltab, *shdr_table = NULL;
        struct elf_rela *rels = NULL;
        int nrels, i, ret = -1;
        elf_word wordval;
        void *addr;
    
        shdr_table = load_at(fd, ehdr->e_shoff,
                             sizeof(struct elf_shdr) * ehdr->e_shnum);
        if (!shdr_table) {
            return -1;
        }
        if (must_swab) {
            for (i = 0; i < ehdr->e_shnum; i++) {
                glue(bswap_shdr, SZ)(&shdr_table[i]);
            }
        }
    
        reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
        if (!reltab) {
            goto fail;
        }
        rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
        if (!rels) {
            goto fail;
        }
        nrels = reltab->sh_size / sizeof(struct elf_rela);
    
        for (i = 0; i < nrels; i++) {
            if (must_swab) {
                glue(bswap_rela, SZ)(&rels[i]);
            }
            if (rels[i].r_offset < ph->p_vaddr ||
                rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
                continue;
            }
            addr = &data[rels[i].r_offset - ph->p_vaddr];
            switch (elf_machine) {
            case EM_S390:
                switch (rels[i].r_info) {
                case R_390_RELATIVE:
                    wordval = *(elf_word *)addr;
                    if (must_swab) {
                        bswapSZs(&wordval);
                    }
                    wordval = translate_fn(translate_opaque, wordval);
                    if (must_swab) {
                        bswapSZs(&wordval);
                    }
                    *(elf_word *)addr = wordval;
                    break;
                default:
                    fprintf(stderr, "Unsupported relocation type %i!
    ",
                            (int)rels[i].r_info);
                }
            }
        }
    
        ret = 0;
    fail:
        g_free(rels);
        g_free(shdr_table);
        return ret;
    }
    
    static int glue(load_elf, SZ)(const char *name, int fd,
                                  uint64_t (*translate_fn)(void *, uint64_t),
                                  void *translate_opaque,
                                  int must_swab, uint64_t *pentry,
                                  uint64_t *lowaddr, uint64_t *highaddr,
                                  int elf_machine, int clear_lsb)
    {
        struct elfhdr ehdr;
        struct elf_phdr *phdr = NULL, *ph;
        int size, i, total_size;
        elf_word mem_size, file_size;
        uint64_t addr, low = (uint64_t)-1, high = 0;
        uint8_t *data = NULL;
        char label[128];
        int ret = ELF_LOAD_FAILED;
    
        if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
            goto fail;
        if (must_swab) {
            glue(bswap_ehdr, SZ)(&ehdr);
        }
    
        switch (elf_machine) {
            case EM_PPC64:
                if (EM_PPC64 != ehdr.e_machine)
                    if (EM_PPC != ehdr.e_machine) {
                        ret = ELF_LOAD_WRONG_ARCH;
                        goto fail;
                    }
                break;
            case EM_X86_64:
                if (EM_X86_64 != ehdr.e_machine)
                    if (EM_386 != ehdr.e_machine) {
                        ret = ELF_LOAD_WRONG_ARCH;
                        goto fail;
                    }
                break;
            case EM_MICROBLAZE:
                if (EM_MICROBLAZE != ehdr.e_machine)
                    if (EM_MICROBLAZE_OLD != ehdr.e_machine) {
                        ret = ELF_LOAD_WRONG_ARCH;
                        goto fail;
                    }
                break;
            default:
                if (elf_machine != ehdr.e_machine) {
                    ret = ELF_LOAD_WRONG_ARCH;
                    goto fail;
                }
        }
    
        if (pentry)
       	*pentry = (uint64_t)(elf_sword)ehdr.e_entry;
    
        glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb);
    
        size = ehdr.e_phnum * sizeof(phdr[0]);
        if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
            goto fail;
        }
        phdr = g_malloc0(size);
        if (!phdr)
            goto fail;
        if (read(fd, phdr, size) != size)
            goto fail;
        if (must_swab) {
            for(i = 0; i < ehdr.e_phnum; i++) {
                ph = &phdr[i];
                glue(bswap_phdr, SZ)(ph);
            }
        }
    
        total_size = 0;
        for(i = 0; i < ehdr.e_phnum; i++) {
            ph = &phdr[i];
            if (ph->p_type == PT_LOAD) {
                mem_size = ph->p_memsz; /* Size of the ROM */
                file_size = ph->p_filesz; /* Size of the allocated data */
                data = g_malloc0(file_size);
                if (ph->p_filesz > 0) {
                    if (lseek(fd, ph->p_offset, SEEK_SET) < 0) {
                        goto fail;
                    }
                    if (read(fd, data, file_size) != file_size) {
                        goto fail;
                    }
                }
                /* address_offset is hack for kernel images that are
                   linked at the wrong physical address.  */
                if (translate_fn) {
                    addr = translate_fn(translate_opaque, ph->p_paddr);
                    glue(elf_reloc, SZ)(&ehdr, fd, must_swab,  translate_fn,
                                        translate_opaque, data, ph, elf_machine);
                } else {
                    addr = ph->p_paddr;
                }
    
                /* the entry pointer in the ELF header is a virtual
                 * address, if the text segments paddr and vaddr differ
                 * we need to adjust the entry */
                if (pentry && !translate_fn &&
                        ph->p_vaddr != ph->p_paddr &&
                        ehdr.e_entry >= ph->p_vaddr &&
                        ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
                        ph->p_flags & PF_X) {
                    *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
                }
    
                snprintf(label, sizeof(label), "phdr #%d: %s", i, name);
    
                /* rom_add_elf_program() seize the ownership of 'data' */
                rom_add_elf_program(label, data, file_size, mem_size, addr);
    
                total_size += mem_size;
                if (addr < low)
                    low = addr;
                if ((addr + mem_size) > high)
                    high = addr + mem_size;
    
                data = NULL;
            }
        }
        g_free(phdr);
        if (lowaddr)
            *lowaddr = (uint64_t)(elf_sword)low;
        if (highaddr)
            *highaddr = (uint64_t)(elf_sword)high;
        return total_size;
     fail:
        g_free(data);
        g_free(phdr);
        return ret;
    }
    

    其中,bswap16s在文件include/qemu/bswap.h中,其定义如下:

    static inline void bswap16s(uint16_t *s)
    {
        *s = bswap16(*s);                                                                                                                                                                
    }
     
    static inline uint16_t bswap16(uint16_t x)
    {
        return bswap_16(x);                                                                                                                                                              
    }

    4、load_at

    load_at在hw/core/loader.c中,其定义如下

    static void *load_at(int fd, off_t offset, size_t size)                                                                                                                              
    {
        void *ptr;
        if (lseek(fd, offset, SEEK_SET) < 0) 
            return NULL;
        ptr = g_malloc(size);
        if (read(fd, ptr, size) != size) {
            g_free(ptr);
            return NULL;
        }    
        return ptr; 
    }
    

    5、ELF文件格式:关于ELF文件格式的内容摘自百度百科

    在计算机科学中,是一种用于二进制文件、可执行文件、目标代码、共享库和核心转储的标准文件格式。
    
    是UNIX系统实验室(USL)作为应用程序二进制接口(Application Binary Interface,ABI)而开发和发布的,也是Linux的主要可执行文件格式。
    
    1999年,被86open项目选为x86架构上的类Unix操作系统的二进制文件标准格式,用来取代COFF。因其可扩展性与灵活性,也可应用在其它处理器、计算机系统架构的操作系统上。
    

        ELF文件由4部分组成,分别是ELF头(ELF header)、程序头表(Program header table)、节(Section)和节头表(Section header table)。实际上,一个文件中不一定包含全部内容,而且他们的位置也未必如同所示这样安排,只有ELF头的位置是固定的,其余各部分的位置、大小等信息有ELF头中的各项值来决定。

    
    
  • 相关阅读:
    java-03 方法
    cm 安装
    java-02 for循环,while循环
    java-01
    Storm入门,看这篇就够了
    Storm入门,看这篇就够了
    基于Spark的电影推荐系统(电影网站)
    基于Spark的电影推荐系统(实战简介)
    基于Spark的电影推荐系统(Scrapy爬虫)
    基于Spark的电影推荐系统(后台管理系统)
  • 原文地址:https://www.cnblogs.com/elta/p/4788693.html
Copyright © 2020-2023  润新知