• tensorflow入门


    从网上找到的一张图,很生动形象。

    第一段代码:

    import tensorflow as tf
    import numpy as np
    
    # 使用 NumPy 生成假数据(phony data), 总共 100 个点.
    x_data = np.float32(np.random.rand(2, 100)) # 随机输入,float64->float32
    y_data = np.dot([0.100, 0.200], x_data) + 0.300
    #print(y_data)
    
    # 构造一个线性模型
    b = tf.Variable(tf.zeros([1]))
    W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
    y = tf.matmul(W, x_data) + b
    
    
    # 最小化方差
    loss = tf.reduce_mean(tf.square(y - y_data))
    optimizer = tf.train.GradientDescentOptimizer(0.5)  #学习率
    train = optimizer.minimize(loss)
    
    # 初始化变量
    init = tf.initialize_all_variables()
    
    # 启动图 (graph)
    sess = tf.Session()
    sess.run(init)
    
    # 拟合平面
    for step in range(0, 201):
        sess.run(train)
        if step % 20 == 0:
            print(step, sess.run(W), sess.run(b))
    
    # 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]
    

      一段图像识别算法:

    原理图:

     

    用数学语言描述:

    argmax是指最大值所对应的下标

    #coding:utf-8
    import tensorflow as tf
    import numpy as np
    import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    #tf.placeholder形参
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    
    #参数设置
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    
    #y是推出每个y[0,10]的概率,所以是一个数组
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)#梯度下降
    
    #建立网络
    sess = tf.InteractiveSession()
    sess.run(tf.initialize_all_variables())
    
    #训练网络
    for i in range(1000):
      batch = mnist.train.next_batch(50)
      train_step.run(feed_dict={x: batch[0], y_: batch[1]})
    
    #计算准确率
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    
    sess.close()
    

      多层神经网络:加入卷积层与池化层

    #coding:utf-8
    import tensorflow as tf
    import numpy as np
    import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    x = tf.placeholder(tf.float32, shape=[None, 784])
    y_ = tf.placeholder("float", shape=[None, 10])
    
    sess = tf.InteractiveSession()
    
    def weight_variable(shape):
      initial = tf.truncated_normal(shape, stddev=0.1)#正态分布,有正有负
      return tf.Variable(initial)
    
    def bias_variable(shape):#偏置项
      initial = tf.constant(0.1, shape=shape)
      return tf.Variable(initial)
    #卷积与池化??
    def conv2d(x, W):
      return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
      return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                            strides=[1, 2, 2, 1], padding='SAME')
    
    W_conv1 = weight_variable([5, 5, 1, 32])
    b_conv1 = bias_variable([32])
    
    x_image = tf.reshape(x, [-1,28,28,1])
    
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
    h_pool1 = max_pool_2x2(h_conv1)
    
    W_conv2 = weight_variable([5, 5, 32, 64])
    b_conv2 = bias_variable([64])
    
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
    h_pool2 = max_pool_2x2(h_conv2)
    
    W_fc1 = weight_variable([7 * 7 * 64, 1024])
    b_fc1 = bias_variable([1024])
    
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    
    keep_prob = tf.placeholder("float")
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    
    y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    sess.run(tf.initialize_all_variables())
    for i in range(20000):
      batch = mnist.train.next_batch(50)
      if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={
            x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
      train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    
    print("test accuracy %g"%accuracy.eval(feed_dict={
        x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
    

      

  • 相关阅读:
    命令行工具解析Crash文件,dSYM文件进行符号化
    我最常用的几个Xcode快键键
    Send push notification on Apple (APNS) on c#.net
    iOS安全笔记
    el captain设置环境变量
    做一个会使用PS的前端开发
    这些HTML、CSS知识点,面试和平时开发都需要 No1-No4
    Node.js
    CSS面试题
    HTML面试题
  • 原文地址:https://www.cnblogs.com/elpsycongroo/p/9144935.html
Copyright © 2020-2023  润新知