从网上找到的一张图,很生动形象。
第一段代码:
import tensorflow as tf import numpy as np # 使用 NumPy 生成假数据(phony data), 总共 100 个点. x_data = np.float32(np.random.rand(2, 100)) # 随机输入,float64->float32 y_data = np.dot([0.100, 0.200], x_data) + 0.300 #print(y_data) # 构造一个线性模型 b = tf.Variable(tf.zeros([1])) W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0)) y = tf.matmul(W, x_data) + b # 最小化方差 loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) #学习率 train = optimizer.minimize(loss) # 初始化变量 init = tf.initialize_all_variables() # 启动图 (graph) sess = tf.Session() sess.run(init) # 拟合平面 for step in range(0, 201): sess.run(train) if step % 20 == 0: print(step, sess.run(W), sess.run(b)) # 得到最佳拟合结果 W: [[0.100 0.200]], b: [0.300]
一段图像识别算法:
原理图:
用数学语言描述:
argmax是指最大值所对应的下标
#coding:utf-8 import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #tf.placeholder形参 x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) #参数设置 W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) #y是推出每个y[0,10]的概率,所以是一个数组 y = tf.nn.softmax(tf.matmul(x,W) + b) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)#梯度下降 #建立网络 sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) #训练网络 for i in range(1000): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) #计算准确率 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})) sess.close()
多层神经网络:加入卷积层与池化层
#coding:utf-8 import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) sess = tf.InteractiveSession() def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1)#正态分布,有正有负 return tf.Variable(initial) def bias_variable(shape):#偏置项 initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #卷积与池化?? def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1,28,28,1]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.initialize_all_variables()) for i in range(20000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print("step %d, training accuracy %g"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))