题目大意:求两条直线的交点坐标。
解题关键:叉积的运用。
证明:
直线的一般方程为$F(x) = ax + by + c = 0$。既然我们已经知道直线的两个点,假设为$(x_0,y_0), (x_1, y_1)$,那么可以得到$a = {y_0} - {y_1}$,$b = x_1 – x_0$,$c = x_0y_1 – x_1y_0$。
因此我们可以将两条直线分别表示为
${F_0}(x) = { m{ }}{a_0}x{ m{ }} + { m{ }}{b_0}y{ m{ }} + {c_0} = 0,{F_1}(x) = {a_1}x + {b_1}y + {c_1} = 0$
那么两条直线的交点应该满足
${a_0}x + {b_0}y + {c_0} = { m{ }}{a_1}x + {b_1}y + {c_1}$
由此可推出
$egin{array}{*{20}{l}}
{x = ({b_0}{c_1} - {b_1}{c_0})/D}\
{y = ({a_1}{c_0} - {a_0}{c_1})/D}
end{array}$
$D = {a_0}{b_1} - {a_1}{b_0}$ (D为0时,表示两直线平行)
#include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cmath> #include<iostream> #define pi acos(-1) using namespace std; typedef long long ll; const double eps=1e-8; const int N=5,maxn=100005,inf=0x3f3f3f3f; struct point{ double x,y; }; struct line{ point a,b; }l[N]; int main(){ int t; double x1,x2,x3,x4,y1,y2,y3,y4; cin>>t; cout<<"INTERSECTING LINES OUTPUT"<<endl; while(t--){ cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4; if((x4-x3)*(y2-y1)==(y4-y3)*(x2-x1)){ if((x2-x1)*(y3-y1)==(y2-y1)*(x3-x1)) cout<<"LINE"<<endl;//用叉积判断共线 else cout<<"NONE"<<endl; } else{ double a1=y1-y2,b1=x2-x1,c1=x1*y2-x2*y1;//c是叉积 double a2=y3-y4,b2=x4-x3,c2=x3*y4-x4*y3; double x=(c2*b1-c1*b2)/(b2*a1-b1*a2); double y=(a2*c1-a1*c2)/(b2*a1-b1*a2); printf("POINT %.2f %.2f ",x,y); } } cout<<"END OF OUTPUT"<<endl; return 0; }
kuangbin模板。求直线的交点。(由于poj waiting,未测试)
#include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cmath> #include<iostream> using namespace std; typedef long long ll; const double eps = 1e-8; int sgn(double x){ if(fabs(x)<eps)return 0; if(x<0)return -1; else return 1; } struct Point{ double x,y; Point(){} Point(double _x,double _y){x=_x;y=_y;} Point operator-(const Point &b)const{return Point(x-b.x,y-b.y);} double operator^(const Point &b)const{return x*b.y-y*b.x;} double operator*(const Point &b)const{return x*b.x+y*b.y;} bool operator==(const Point &b)const{return x==b.x&&y==b.y;} }; struct Line{ Point s,e; Line(){} Line(Point _s,Point _e){s=_s;e=_e;} //两直线相交求交点 pair<int,Point>operator&(const Line &b)const{ Point res=s; if(sgn((s-e)^(b.s-b.e))==0){ if(sgn((s-b.e)^(b.s-b.e))==0) return make_pair(0,res);//重合 else return make_pair(1,res);//平行 } double t=((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x+=(e.x-s.x)*t; res.y+=(e.y-s.y)*t; return make_pair(2,res); } }; //*判断线段相交 bool inter(Line l1,Line l2){ return max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) && max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) && max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) && max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) && sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e))<=0 && sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e))<=0; } int main(){ int n; printf("INTERSECTING LINES OUTPUT "); cin>>n; while(n--){ int a1,b1,c1,d1,a2,b2,c2,d2; cin>>a1>>b1>>c1>>d1>>a2>>b2>>c2>>d2; Line a=Line(Point(a1,b1),Point(c1,d1)),b=Line(Point(a2,b2),Point(c2,d2)); pair<int,Point>pp=a&b; if(pp.first==0){ printf("LINE "); }else if(pp.first==1){ printf("NONE "); }else{ Point tmp=pp.second; printf("POINT %.2lf %.2lf ",tmp.x,tmp.y); } } printf("END OF OUTPUT "); }