• [poj1269]Intersecting Lines


    题目大意:求两条直线的交点坐标。

    解题关键:叉积的运用。

    证明:

    直线的一般方程为$F(x) = ax + by + c = 0$。既然我们已经知道直线的两个点,假设为$(x_0,y_0), (x_1, y_1)$,那么可以得到$a = {y_0} - {y_1}$,$b = x_1 – x_0$,$c = x_0y_1 – x_1y_0$。

    因此我们可以将两条直线分别表示为

    ${F_0}(x) = { m{ }}{a_0}x{ m{ }} + { m{ }}{b_0}y{ m{ }} + {c_0} = 0,{F_1}(x) = {a_1}x + {b_1}y + {c_1} = 0$

    那么两条直线的交点应该满足

    ${a_0}x + {b_0}y + {c_0} = { m{ }}{a_1}x + {b_1}y + {c_1}$

    由此可推出

    $egin{array}{*{20}{l}}
    {x = ({b_0}{c_1} - {b_1}{c_0})/D}\
    {y = ({a_1}{c_0} - {a_0}{c_1})/D}
    end{array}$

    $D = {a_0}{b_1} - {a_1}{b_0}$ (D为0时,表示两直线平行)

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cstdlib>
    #include<cmath>
    #include<iostream>
    #define pi acos(-1)
    using namespace std;
    typedef long long ll; 
    const double eps=1e-8;
    const int N=5,maxn=100005,inf=0x3f3f3f3f;
    struct point{
        double x,y;
    };
    struct line{
       point a,b;
    }l[N];
    
    int main(){
        int t;
        double x1,x2,x3,x4,y1,y2,y3,y4;
        cin>>t;
        cout<<"INTERSECTING LINES OUTPUT"<<endl;
        while(t--){
            cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4;
            if((x4-x3)*(y2-y1)==(y4-y3)*(x2-x1)){
                if((x2-x1)*(y3-y1)==(y2-y1)*(x3-x1)) cout<<"LINE"<<endl;//用叉积判断共线
                else cout<<"NONE"<<endl;
            }
            else{
                double a1=y1-y2,b1=x2-x1,c1=x1*y2-x2*y1;//c是叉积 
                double a2=y3-y4,b2=x4-x3,c2=x3*y4-x4*y3;
                double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
                double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
                printf("POINT %.2f %.2f
    ",x,y);
            }
        }
        cout<<"END OF OUTPUT"<<endl;
        return 0;
    }

     kuangbin模板。求直线的交点。(由于poj waiting,未测试)

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<cstdlib>
    #include<cmath>
    #include<iostream>
    using namespace std;
    typedef long long ll;
    const double eps = 1e-8;
    int sgn(double x){
        if(fabs(x)<eps)return 0;
        if(x<0)return -1;
        else return 1;
    }
    struct Point{
        double x,y;
        Point(){}
        Point(double _x,double _y){x=_x;y=_y;}
        Point operator-(const Point &b)const{return Point(x-b.x,y-b.y);}
        double operator^(const Point &b)const{return x*b.y-y*b.x;}
        double operator*(const Point &b)const{return x*b.x+y*b.y;}
        bool operator==(const Point &b)const{return x==b.x&&y==b.y;}
    };
    struct Line{
        Point s,e;
        Line(){}
        Line(Point _s,Point _e){s=_s;e=_e;}
        //两直线相交求交点
        pair<int,Point>operator&(const Line &b)const{
            Point res=s;
            if(sgn((s-e)^(b.s-b.e))==0){
                if(sgn((s-b.e)^(b.s-b.e))==0)
                    return make_pair(0,res);//重合
                else return make_pair(1,res);//平行
            }
            double t=((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
            res.x+=(e.x-s.x)*t;
            res.y+=(e.y-s.y)*t;
            return make_pair(2,res);
        }
    };
    
    //*判断线段相交
    bool inter(Line l1,Line l2){
        return
        max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
        max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
        max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
        max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
        sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e))<=0 &&
        sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e))<=0;
    }
    int main(){
        int n;
        printf("INTERSECTING LINES OUTPUT
    ");
        cin>>n;
        while(n--){
            int a1,b1,c1,d1,a2,b2,c2,d2;
            cin>>a1>>b1>>c1>>d1>>a2>>b2>>c2>>d2;
            Line a=Line(Point(a1,b1),Point(c1,d1)),b=Line(Point(a2,b2),Point(c2,d2));
            pair<int,Point>pp=a&b;
            if(pp.first==0){
                printf("LINE
    ");
            }else if(pp.first==1){
                printf("NONE
    ");
            }else{
                Point tmp=pp.second;
                printf("POINT %.2lf %.2lf
    ",tmp.x,tmp.y);
            }
        }
        printf("END OF OUTPUT
    ");
    }
  • 相关阅读:
    空气中超声衰减
    CSS文档流
    新华三面试经历
    HTML5实现一个时钟动画
    HTML5实现立方体及透视效果
    JS对象与包装类
    JS作用域、执行上下文、递归与闭包
    jQuery初体验—实现左右切换图片
    JS数组练习
    jQuery之图片提示效果
  • 原文地址:https://www.cnblogs.com/elpsycongroo/p/8726513.html
Copyright © 2020-2023  润新知