套接字的工作流程(基于TCP和 UDP两个协议)
TCP和UDP对比
TCP(Transmission Control Protocol)可靠的、面向连接的协议(eg:打电话)、传输效率低全双工通信(发送缓存&接收缓存)、面向字节流。使用TCP的应用:Web浏览器;文件传输程序。
UDP(User Datagram Protocol)不可靠的、无连接的服务,传输效率高(发送前时延小),一对一、一对多、多对一、多对多、面向报文(数据包),尽最大努力服务,无拥塞控制。使用UDP的应用:域名系统 (DNS);视频流;IP语音(VoIP)。
TCP协议下的socket
个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。 生活中的场景就解释了这工作原理。
【连接过程总结】
1)可以看到,只有当server端listen之后,client端调用connect才能成功,否则就会返回RST响应拒绝连接
2)只有当accept后,client和server才能调用recv和send等io操作
3)socket API调用错误不会导致client出现SYN_SENT状态,那么只能是网络设备丢包(路由器、防火墙)才会导致SYNC_SENT状态
先从服务器端说起。服务器端先初始化Socket,然后与端口绑定(bind),对端口进行监听(listen),调用accept阻塞,等待客户端连接。在这时如果有个客户端初始化一个Socket,然后连接服务器(connect),如果连接成功,这时客户端与服务器端的连接就建立了。客户端发送数据请求,服务器端接收请求并处理请求,然后把回应数据发送给客户端,客户端读取数据,最后关闭连接,一次交互结束
import socket socket.socket(socket_family,socket_type,protocal=0) socket_family 可以是 AF_UNIX 或 AF_INET。socket_type 可以是 SOCK_STREAM 或 SOCK_DGRAM。protocol 一般不填,默认值为 0。 获取tcp/ip套接字 tcpSock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 获取udp/ip套接字 udpSock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 由于 socket 模块中有太多的属性。我们在这里破例使用了'from module import *'语句。使用 'from socket import *',我们就把 socket 模块里的所有属性都带到我们的命名空间里了,这样能 大幅减短我们的代码。 例如tcpSock = socket(AF_INET, SOCK_STREAM) 服务端套接字函数 s.bind() 绑定(主机,端口号)到套接字 s.listen() 开始TCP监听 s.accept() 被动接受TCP客户的连接,(阻塞式)等待连接的到来 客户端套接字函数 s.connect() 主动初始化TCP服务器连接 s.connect_ex() connect()函数的扩展版本,出错时返回出错码,而不是抛出异常 公共用途的套接字函数 s.recv() 接收TCP数据 s.send() 发送TCP数据(send在待发送数据量大于己端缓存区剩余空间时,数据丢失,不会发完) s.sendall() 发送完整的TCP数据(本质就是循环调用send,sendall在待发送数据量大于己端缓存区剩余空间时,数据不丢失,循环调用send直到发完) s.recvfrom() 接收UDP数据 s.sendto() 发送UDP数据 s.getpeername() 连接到当前套接字的远端的地址 s.getsockname() 当前套接字的地址 s.getsockopt() 返回指定套接字的参数 s.setsockopt() 设置指定套接字的参数 s.close() 关闭套接字 面向锁的套接字方法 s.setblocking() 设置套接字的阻塞与非阻塞模式 s.settimeout() 设置阻塞套接字操作的超时时间 s.gettimeout() 得到阻塞套接字操作的超时时间 面向文件的套接字的函数 s.fileno() 套接字的文件描述符 s.makefile() 创建一个与该套接字相关的文件
第一版,单个客户端与服务端通信(low版)
# 网络通信与打电话(诺基亚)是一样的。 import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.bind(('127.0.0.1',8080)) # 0 ~ 65535 1024之前系统分配好的端口 绑定电话卡 phone.listen(5) # 同一时刻有5个请求,但是可以有N多个链接。 开机。 conn, client_addr = phone.accept() # 接电话 print(conn, client_addr, sep=' ') from_client_data = conn.recv(1024) # 一次接收的最大限制 bytes print(from_client_data.decode('utf-8')) conn.send(from_client_data.upper()) conn.close() # 挂电话 phone.close() # 关机 服务端
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号 phone.send('hello'.encode('utf-8')) from_server_data = phone.recv(1024) print(from_server_data) phone.close() # 挂电话 客户端
第二版,通信循环
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.bind(('127.0.0.1',8080)) phone.listen(5) conn, client_addr = phone.accept() print(conn, client_addr, sep=' ') while 1: # 循环收发消息 try: from_client_data = conn.recv(1024) print(from_client_data.decode('utf-8')) conn.send(from_client_data + b'SB') except ConnectionResetError: break conn.close() phone.close() 服务端
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号 while 1: # 循环收发消息 client_data = input('>>>') phone.send(client_data.encode('utf-8')) from_server_data = phone.recv(1024) print(from_server_data.decode('utf-8')) phone.close() # 挂电话 客户端
第三版, 通信,连接循环
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.bind(('127.0.0.1',8080)) phone.listen(5) while 1 : # 循环连接客户端 conn, client_addr = phone.accept() print(client_addr) while 1: try: from_client_data = conn.recv(1024) print(from_client_data.decode('utf-8')) conn.send(from_client_data + b'SB') except ConnectionResetError: break conn.close() phone.close() 服务端
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号 while 1: client_data = input('>>>') phone.send(client_data.encode('utf-8')) from_server_data = phone.recv(1024) print(from_server_data.decode('utf-8')) phone.close() # 挂电话 客户端
远程执行命令的示例:
import socket import subprocess phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) phone.bind(('127.0.0.1',8080)) phone.listen(5) while 1 : # 循环连接客户端 conn, client_addr = phone.accept() print(client_addr) while 1: try: cmd = conn.recv(1024) ret = subprocess.Popen(cmd.decode('utf-8'),shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE) correct_msg = ret.stdout.read() error_msg = ret.stderr.read() conn.send(correct_msg + error_msg) except ConnectionResetError: break conn.close() phone.close() 服务端
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号 while 1: cmd = input('>>>') phone.send(cmd.encode('utf-8')) from_server_data = phone.recv(1024) print(from_server_data.decode('gbk')) phone.close() # 挂电话 客户端
粘包
讲粘包之前先看看socket缓冲区的问题:
每个 socket 被创建后,都会分配两个缓冲区,输入缓冲区和输出缓冲区。
write()/send() 并不立即向网络中传输数据,而是先将数据写入缓冲区中,再由TCP协议将数据从缓冲区发送到目标机器。一旦将数据写入到缓冲区,函数就可以成功返回,不管它们有没有到达目标机器,也不管它们何时被发送到网络,这些都是TCP协议负责的事情。
TCP协议独立于 write()/send() 函数,数据有可能刚被写入缓冲区就发送到网络,也可能在缓冲区中不断积压,多次写入的数据被一次性发送到网络,这取决于当时的网络情况、当前线程是否空闲等诸多因素,不由程序员控制。
read()/recv() 函数也是如此,也从输入缓冲区中读取数据,而不是直接从网络中读取。
这些I/O缓冲区特性可整理如下:
1.I/O缓冲区在每个TCP套接字中单独存在;
2.I/O缓冲区在创建套接字时自动生成;
3.即使关闭套接字也会继续传送输出缓冲区中遗留的数据;
4.关闭套接字将丢失输入缓冲区中的数据。
输入输出缓冲区的默认大小一般都是 8K,可以通过 getsockopt() 函数获取:
1.unsigned optVal;
2.int optLen = sizeof(int);
3.getsockopt(servSock, SOL_SOCKET, SO_SNDBUF,(char*)&optVal, &optLen);
4.printf("Buffer length: %d
", optVal);
socket缓冲区解释
socket缓存区的详细解释
每个 socket 被创建后,都会分配两个缓冲区,输入缓冲区和输出缓冲区。 write()/send() 并不立即向网络中传输数据,而是先将数据写入缓冲区中,再由TCP协议将数据从缓冲区发送到目标机器。一旦将数据写入到缓冲区,函数就可以成功返回,不管它们有没有到达目标机器,也不管它们何时被发送到网络,这些都是TCP协议负责的事情。 TCP协议独立于 write()/send() 函数,数据有可能刚被写入缓冲区就发送到网络,也可能在缓冲区中不断积压,多次写入的数据被一次性发送到网络,这取决于当时的网络情况、当前线程是否空闲等诸多因素,不由程序员控制。 read()/recv() 函数也是如此,也从输入缓冲区中读取数据,而不是直接从网络中读取。 这些I/O缓冲区特性可整理如下: 1.I/O缓冲区在每个TCP套接字中单独存在; 2.I/O缓冲区在创建套接字时自动生成; 3.即使关闭套接字也会继续传送输出缓冲区中遗留的数据; 4.关闭套接字将丢失输入缓冲区中的数据。 输入输出缓冲区的默认大小一般都是 8K,可以通过 getsockopt() 函数获取: 1.unsigned optVal; 2.int optLen = sizeof(int); 3.getsockopt(servSock, SOL_SOCKET, SO_SNDBUF,(char*)&optVal, &optLen); 4.printf("Buffer length: %d ", optVal); socket缓冲区解释
须知:只有TCP有粘包现象,UDP永远不会粘包!
发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。
例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束
所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。
此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。
TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略
udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠
tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。
具体原因
两种情况下会发生粘包。
1,接收方没有及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包)
import socket
import subprocess
phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
phone.bind(('127.0.0.1', 8080))
phone.listen(5)
while 1: # 循环连接客户端
conn, client_addr = phone.accept()
print(client_addr)
while 1:
try:
cmd = conn.recv(1024)
ret = subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
correct_msg = ret.stdout.read()
error_msg = ret.stderr.read()
conn.send(correct_msg + error_msg)
except ConnectionResetError:
break
conn.close()
phone.close()
服务端
import socket import subprocess phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM) phone.bind(('127.0.0.1', 8080)) phone.listen(5) while 1: # 循环连接客户端 conn, client_addr = phone.accept() print(client_addr) while 1: try: cmd = conn.recv(1024) ret = subprocess.Popen(cmd.decode('utf-8'), shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) correct_msg = ret.stdout.read() error_msg = ret.stderr.read() conn.send(correct_msg + error_msg) except ConnectionResetError: break conn.close() phone.close()
import socket
phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话
phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号
while 1:
cmd = input('>>>')
phone.send(cmd.encode('utf-8'))
from_server_data = phone.recv(1024)
print(from_server_data.decode('gbk'))
phone.close()
# 由于客户端发的命令获取的结果大小已经超过1024,那么下次在输入命令,会继续取上次残留到缓存区的数据。
客户端
import socket phone = socket.socket(socket.AF_INET,socket.SOCK_STREAM) # 买电话 phone.connect(('127.0.0.1',8080)) # 与客户端建立连接, 拨号 while 1: cmd = input('>>>') phone.send(cmd.encode('utf-8')) from_server_data = phone.recv(1024) print(from_server_data.decode('gbk')) phone.close() # 由于客户端发的命令获取的结果大小已经超过1024,那么下次在输入命令,会继续取上次残留到缓存区的数据。
2,发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据也很小,会合到一起,产生粘包)
import socket
phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
phone.bind(('127.0.0.1', 8080))
phone.listen(5)
conn, client_addr = phone.accept()
frist_data = conn.recv(1024)
print('1:',frist_data.decode('utf-8')) # 1: helloworld
second_data = conn.recv(1024)
print('2:',second_data.decode('utf-8'))
conn.close()
phone.close()
服务端
import socket phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM) phone.bind(('127.0.0.1', 8080)) phone.listen(5) conn, client_addr = phone.accept() frist_data = conn.recv(1024) print('1:',frist_data.decode('utf-8')) # 1: helloworld second_data = conn.recv(1024) print('2:',second_data.decode('utf-8')) conn.close() phone.close()
import socket
phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
phone.connect(('127.0.0.1', 8080))
phone.send(b'hello')
phone.send(b'world')
phone.close()
# 两次返送信息时间间隔太短,数据小,造成服务端一次收取
客户端
import socket phone = socket.socket(socket.AF_INET, socket.SOCK_STREAM) phone.connect(('127.0.0.1', 8080)) phone.send(b'hello') phone.send(b'world') phone.close() # 两次返送信息时间间隔太短,数据小,造成服务端一次收取