• R中统计假设检验总结(一)


    先PS一个:
    考虑到这次的题目本身的特点 尝试下把说明性内容都直接作为备注写在语句中 另外用于说明的部分例子参考了我的教授Guy Yollin在Financial Data Analysis and Modeling with R这门课课件上的例子 部分参考了相关package的帮助文档中的例子 下面正题

    - 戌

     



    > # Assume the predetermined significance level is 0.05.
    假设预定的显着性水平是0.05。



    > # 1 Shapiro-Wilk Test

    > # Null hypothesis:
    零假设:
    > # The sample came from a normally distributed population.
    样本来自正态分布总体

    > install.packages("stats")
    > library(stats)
    > # args() function displays the argument names and corresponding default values of a function or primitive.
    args()函数显示一个函数的参数名称和相应的默认值。
    > args(shapiro.test)
    function (x) 
    NULL

    > # Example 1:
    > # Test random sample from a normal distribution.
    测试来自正态分布的随机抽样。
    > set.seed(1)
    > x <- rnorm(150)
    > res <- shapiro.test(x)

    > res$p.value # > 0.05
    [1] 0.7885523
    > # Conclusion: We are unable to reject the null hypothesis.
    结论:我们无法拒绝零假设。

    > # Example 2:
    > # Test daily observations of S&P 500 from 1981-01 to 1991-04.
    测试S&P500指数从1981-01到1991-04的日观察值。
    > install.packages("Ecdat")
    > library(Ecdat)
    > data(SP500)
    > class(SP500)
    [1] "data.frame"
    > SPreturn = SP500$r500 # use the $ to index a column of the data.frame
    用$符号取出数据框中的一列
    > (res <- shapiro.test(SPreturn))
            Shapiro-Wilk normality test
    data: SPreturn
    W = 0.8413, p-value < 2.2e-16

    > names(res)
    [1] "statistic" "p.value" "method" "data.name"

    > res$p.value # < 0.05
    [1] 2.156881e-46
    > # Conclusion: We should reject the null hypothesis.
    结论:我们应该拒绝零假设。



    > # 2 Jarque-Bera Test

    > # Null hypothesis:
    > # The skewness and the excess kurtosis of samples are zero.
    样本的偏度和多余峰度均为零

    > install.packages("tseries")
    > library(tseries)
    > args(jarque.bera.test)
    function (x) 
    NULL

    > # Example 1: 
    > # Test random sample from a normal distribution
    > set.seed(1)
    > x <- rnorm(150)
    > res <- jarque.bera.test(x)

    > names(res)
    [1] "statistic" "parameter" "p.value" "method" "data.name"

    > res$p.value # > 0.05
    X-squared 
    0.8601533 
    > # Conclusion: We should not reject the null hypothesis. 

    > # Example 2:
    > # Test daily observations of S&P 500 from 1981–01 to 1991–04
    > install.packages("Ecdat")
    > library(Ecdat)
    > data(SP500)
    > class(SP500)
    [1] "data.frame"
    > SPreturn = SP500$r500 # use the $ to index a column of the data.frame
    > (res <- jarque.bera.test(SPreturn))
            Jarque Bera Test
    data: SPreturn
    X-squared = 648508.6, df = 2, p-value < 2.2e-16

    > names(res)
    [1] "statistic" "parameter" "p.value" "method" "data.name"

    > res$p.value # < 0.05
    X-squared 
            0 
    > # Conclusion: We should reject the null hypothesis.



    > # 3 Correlation Test

    > # Null hypothesis:
    > # The correlation is zero.
    样本相关性为0

    > install.packages("stats")
    > library(stats)
    > args(getS3method("cor.test","default"))
    function (x, y, alternative = c("two.sided", "less", "greater"), 
        method = c("pearson", "kendall", "spearman"), exact = NULL, 
        conf.level = 0.95, continuity = FALSE, ...) 
    NULL
    > # x, y: numeric vectors of the data to be tested
    x, y: 进行测试的数据的数值向量
    > # alternative: controls two-sided test or one-sided test
    alternative: 控制进行双侧检验或单侧检验
    > # method: "pearson", "kendall", or "spearman"
    > # conf.level: confidence level for confidence interval
    conf.level: 置信区间的置信水平

    > # Example:
    > # Test the correlation between the food industry and the market portfolio.
    测试在食品行业的收益和市场投资组合之间的相关性。
    > data(Capm,package="Ecdat")
    > (res <- cor.test(Capm$rfood,Capm$rmrf))
            Pearson's product-moment correlation
    皮尔逊积矩相关
    data: Capm$rfood and Capm$rmrf
    t = 27.6313, df = 514, p-value < 2.2e-16
    alternative hypothesis: true correlation is not equal to 0
    备择假设:真正的相关性不等于0
    95 percent confidence interval:
    95%置信区间
     0.7358626 0.8056348
    sample estimates:
    样本估计
          cor 
    0.7730767 

    > names(res)
    [1] "statistic" "parameter" "p.value" "estimate" 
    [5] "null.value" "alternative" "method" "data.name" 
    [9] "conf.int" 

    > res$p.value # < 0.05
    [1] 0
    > # Conclusion: We should reject the null hypothesis.

  • 相关阅读:
    spring 的简单了解
    leetcode 刷题锻炼算法思维
    REDIS学习笔记
    mark:如何使用FileZilla连接虚拟机上的Fedora
    尝试在virtualbox fedora21 下安装additions和mount share folder
    字符集与Mysql字符集处理(二)
    字符集与Mysql字符集处理(一)
    MYSQL开发性能研究——INSERT,REPLACE,INSERT-UPDATE性能比较
    MYSQL开发性能研究——批量插入的优化措施
    Marven笔记贴
  • 原文地址:https://www.cnblogs.com/einyboy/p/3197584.html
Copyright © 2020-2023  润新知