• CMU Deep Learning 2018 by Bhiksha Raj 学习记录(1)


    • Recitation 2

      • numpy operations
        • array index
        • x = np.arange(10) ** 2
          # x:[ 0  1  4  9 16 25 36 49 64 81]
          print(x[::-1]) # all reversed
          print(x[8:1:-1]) # reversed slice
          print(x[::2]) # every other
          print(x[:]) # no-op (but useful syntax when dealing with n-d arrays)
          ---
          output:
          [81 64 49 36 25 16  9  4  1  0]
          [64 49 36 25 16  9  4]
          [ 0  4 16 36 64]
          [ 0  1  4  9 16 25 36 49 64 81]
          
        • simple syntax
        • # Simple syntax
          np.random.seed(123)
          x=np.random.random((10,))
          print(x)
          print(x>0.5)
          print(x[x>0.5])
          ---
          [ 0.69646919  0.28613933  0.22685145  0.55131477  0.71946897  0.42310646
          0.9807642   0.68482974  0.4809319   0.39211752]
          [ True False False  True  True False  True  True False False]
          [ 0.69646919  0.55131477  0.71946897  0.9807642   0.68482974]
          
        • get diagonal elements
        • # Create a random matrix
          x = np.random.random((5,5)) 
          print(x)
          # Get diagonal elements
          print(np.diag(x))
          
        • save a single array
        • x = np.random.random((5,))
          np.save('temp.npy', x)
          y = np.load('temp.npy')
          print(y)
          
        • save dict of arrays
        • x1 = x = np.random.random((2,))
          y1 = x = np.random.random((2,))
          np.savez('temp.npy', x = x1, y = y1)
          data.np.load('temp.npy')
          print(data['x'])
          print(data['y'])
          
        • transpose
        • x=np.random.random((2,3))
          print(x)
          print(x.T) # simple transpose
          print(np.transpose(x, (1,0))) # syntax for multiple dimensions
          ---
          [[ 0.6919703   0.55438325  0.38895057]
           [ 0.92513249  0.84167     0.35739757]]
          [[ 0.6919703   0.92513249]
           [ 0.55438325  0.84167   ]
           [ 0.38895057  0.35739757]]
          [[ 0.6919703   0.92513249]
           [ 0.55438325  0.84167   ]
           [ 0.38895057  0.35739757]]
          
        • Add/remove a dim
        • # Special functions for adding and removing dims
          x=np.random.random((2,3,1))
          print(np.expand_dims(x, 1).shape)  # add a new dimension
          print(np.squeeze(x,2).shape)  # remove a dimension (must be size of 1)
          ---
          (2, 1, 3, 1)
          (2, 3)
          
      • Pytorch operation

    import torch
    import numpy as np
    from torch.autograd import Variable

    x = torch.FloatTensor(2,3)
    print(x)
    x.zero_()
    print(x)

    np.random.seed(123)
    np_array = np.random.random((2,3))
    print(torch.FloatTensor(np_array))
    print(torch.from_numpy(np_array))

    torch.manual_seed(123)
    print(torch.randn(2,3))

    print(torch.eye(3))
    print(torch.ones(2,3))
    print(torch.zeros(2,3))
    print(torch.arange(0,3))

    x = torch.FloatTensor(3,4)
    print(x.size())
    print(x.type())

    x = torch.rand(3,2)
    print(x)
    y = x.cuda()
    print(y)
    z = y.cpu()
    print(z)
    print(z.numpy())

    x = torch.rand(3,5).cuda()
    y = torch.rand(5,4).cuda()
    print(torch.mm(x,y))

    print(x.new(1,2).zero_())

    from timeit import timeit
    x = torch.rand(1000,64)
    y = torch.rand(64,32)
    number = 10000

    def square():
    z = torch.mm(x,y)

    print('CPU: {}ms'.format(timeit(square,number = number)1000))
    x,y = x.cuda(),y.cuda()
    print('GPU: {}ms'.format(timeit(square,number = number)
    1000))

    x = torch.arange(0,5)
    print(torch.sum(x))
    print(torch.sum(torch.exp(x)))
    print(torch.mean(x))

    x = torch.rand(3,2)
    print(x)
    print(x[1,:])

    x = Variable(torch.arange(0,4),requires_grad = True)
    y = torch.sum(x**2)
    y.backward()
    print(x)
    print(y)
    print(x.grad)

    x = torch.rand(3,5)
    y = torch.rand(5,4)
    xv = Variable(x)
    yv = Variable(y)
    print(torch.mm(x,y))
    print(torch.mm(xv,yv))

    x = Variable(torch.arange(0,4),requires_grad = True)
    torch.sum(x ** 2).backward()
    print(x.grad)
    torch.sum(x ** 2).backward()
    print(x.grad)
    x.grad.data.zero_()
    torch.sum(x ** 2).backward()
    print(x.grad)

    net = torch.nn.Sequential(
    torch.nn.Linear(28*28,256),
    torch.nn.Sigmoid(),
    torch.nn.Linear(256,10)
    )
    print(net.state_dict().keys())
    print(net.state_dict())
    torch.save(net.state_dict(),'test.t7')
    net.load_state_dict(torch.load('test.t7'))

    class MyNetwork(torch.nn.Module):
    def init(self):
    super().init()
    self.layer1 = torch.nn.Linear(28*28,256),
    self.layer2 = torch.nn.Sigmoid(),
    self.layer3 = torch.nn.Linear(256,10)

    def forward(self,input_val):
        h = input_val
        h = self.layer1(h)
        h = self.layer2(h)
        h = self.layer3(h)
        return h
    

    net = MyNetwork()

  • 相关阅读:
    memory runs at single channel问题解决
    ASP php获取文件URL地址等方法
    zencart的modules下数据库操作templates排版和common首页引用
    php生成html 伪静态??
    Linux服务器自动备份压缩MySQL数据库的实用方法
    dos 命令集
    Zencart 500错误查找和解决方法
    破解JS加密:url unicode加密而已
    .htaccess 保护文件夹
    TCP 的那些事儿(上)
  • 原文地址:https://www.cnblogs.com/ecoflex/p/8870121.html
Copyright © 2020-2023  润新知