opengl 学习 之 12 lesson
简介
扩展函数值DEBUG!!!
link
http://www.opengl-tutorial.org/uncategorized/2017/06/07/website-update/
TIPS
GLEW_ARB_debug_output 宏跟GPU输出debug有关
GL_:所有平台都有;GLX_:Linux & Mac only(X11); WGL_:Windows only
EXT: 一般的扩展;ARB:扩展被所有的OpenGL会员接受
这里的碎片渲染器,出现了一个简单的错误,GL_INVALID_ENUM error generated.
// a big syntax error to demonstrate the point...
HELLO WORLD
code
// Include standard headers
#include <stdio.h>
#include <stdlib.h>
#include <vector>
// Include GLEW
#include <GL/glew.h>
// Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window;
// Include GLM
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
using namespace glm;
#include <common/shader.hpp>
#include <common/texture.hpp>
#include <common/controls.hpp>
#include <common/objloader.hpp>
#include <common/vboindexer.hpp>
// The ARB_debug_output extension, which is used in this tutorial as an example,
// can call a function of ours with error messages.
// This function must have this precise prototype ( parameters and return value )
// See http://www.opengl.org/registry/specs/ARB/debug_output.txt , "New Types" :
// The callback function that applications can define, and
// is accepted by DebugMessageCallbackARB, is defined as:
//
// typedef void (APIENTRY *DEBUGPROCARB)(enum source,
// enum type,
// uint id,
// enum severity,
// sizei length,
// const char* message,
// void* userParam);
void APIENTRY DebugOutputCallback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, const void* userParam){
printf("OpenGL Debug Output message : ");
if(source == GL_DEBUG_SOURCE_API_ARB) printf("Source : API; ");
else if(source == GL_DEBUG_SOURCE_WINDOW_SYSTEM_ARB) printf("Source : WINDOW_SYSTEM; ");
else if(source == GL_DEBUG_SOURCE_SHADER_COMPILER_ARB) printf("Source : SHADER_COMPILER; ");
else if(source == GL_DEBUG_SOURCE_THIRD_PARTY_ARB) printf("Source : THIRD_PARTY; ");
else if(source == GL_DEBUG_SOURCE_APPLICATION_ARB) printf("Source : APPLICATION; ");
else if(source == GL_DEBUG_SOURCE_OTHER_ARB) printf("Source : OTHER; ");
if(type == GL_DEBUG_TYPE_ERROR_ARB) printf("Type : ERROR; ");
else if(type == GL_DEBUG_TYPE_DEPRECATED_BEHAVIOR_ARB) printf("Type : DEPRECATED_BEHAVIOR; ");
else if(type == GL_DEBUG_TYPE_UNDEFINED_BEHAVIOR_ARB) printf("Type : UNDEFINED_BEHAVIOR; ");
else if(type == GL_DEBUG_TYPE_PORTABILITY_ARB) printf("Type : PORTABILITY; ");
else if(type == GL_DEBUG_TYPE_PERFORMANCE_ARB) printf("Type : PERFORMANCE; ");
else if(type == GL_DEBUG_TYPE_OTHER_ARB) printf("Type : OTHER; ");
if(severity == GL_DEBUG_SEVERITY_HIGH_ARB) printf("Severity : HIGH; ");
else if(severity == GL_DEBUG_SEVERITY_MEDIUM_ARB) printf("Severity : MEDIUM; ");
else if(severity == GL_DEBUG_SEVERITY_LOW_ARB) printf("Severity : LOW; ");
// You can set a breakpoint here ! Your debugger will stop the program,
// and the callstack will immediately show you the offending call.
printf("Message : %s
", message);
}
int main( void )
{
// Initialise GLFW
if( !glfwInit() )
{
fprintf( stderr, "Failed to initialize GLFW
" );
getchar();
return -1;
}
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// ARB_debug_output is a bit special,
// it requires creating the OpenGL context
// with paticular flags.
// GLFW exposes it this way; if you use SDL, SFML, freeGLUT
// or other, check the documentation.
// If you use custom code, read the spec :
// http://www.opengl.org/registry/specs/ARB/debug_output.txt
glfwWindowHint(GLFW_OPENGL_DEBUG_CONTEXT, 1);
// Open a window and create its OpenGL context
window = glfwCreateWindow( 1024, 768, "Tutorial 12 - Extensions", NULL, NULL);
if( window == NULL ){
fprintf( stderr, "Failed to open GLFW window. If you have an Intel GPU, they are not 3.3 compatible. Try the 2.1 version of the tutorials.
" );
getchar();
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
// Initialize GLEW
glewExperimental = true; // Needed for core profile
if (glewInit() != GLEW_OK) {
fprintf(stderr, "Failed to initialize GLEW
");
getchar();
glfwTerminate();
return -1;
}
// Example 1 :
if ( GLEW_AMD_seamless_cubemap_per_texture ){
printf("The GL_AMD_seamless_cubemap_per_texture is present, (but we're not goint to use it)
");
// Now it's legal to call glTexParameterf with the TEXTURE_CUBE_MAP_SEAMLESS_ARB parameter
// You HAVE to test this, because obviously, this code would fail on non-AMD hardware.
}
// Example 2 :
if ( GLEW_ARB_debug_output ){
printf("The OpenGL implementation provides debug output. Let's use it !
");
glDebugMessageCallbackARB(&DebugOutputCallback, NULL);
glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB);
}else{
printf("ARB_debug_output unavailable. You have to use glGetError() and/or gDebugger to catch mistakes.
");
}
// Ensure we can capture the escape key being pressed below
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Hide the mouse and enable unlimited mouvement
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Set the mouse at the center of the screen
glfwPollEvents();
glfwSetCursorPos(window, 1024/2, 768/2);
// Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
// Enable depth test
glEnable(GL_DEPTH); // SHOULD BE GL_DEPTH_TEST ! WILL TRIGGER AN ERROR MESSAGE !
// Accept fragment if it closer to the camera than the former one
glDepthFunc(GL_LEFT); // SHOULD BE GL_LESS ! WILL TRIGGER AN ERROR MESSAGE !
// Cull triangles which normal is not towards the camera
glEnable(GL_CULL_FACE_MODE); // SHOULD BE GL_CULL_FACE ! WILL TRIGGER AN ERROR MESSAGE !
GLuint VertexArrayID;
glGenVertexArrays(1, &VertexArrayID);
glBindVertexArray(VertexArrayID);
// Create and compile our GLSL program from the shaders
GLuint programID = LoadShaders( "StandardShading.vertexshader", "StandardShading_WithSyntaxErrors.fragmentshader" );
// Get a handle for our "MVP" uniform
GLuint MatrixID = glGetUniformLocation(programID, "MVP");
GLuint ViewMatrixID = glGetUniformLocation(programID, "V");
GLuint ModelMatrixID = glGetUniformLocation(programID, "M");
// Load the texture
GLuint Texture = loadDDS("uvmap.DDS");
// Get a handle for our "myTextureSampler" uniform
GLuint TextureID = glGetUniformLocation(programID, "myTextureSampler");
// Read our .obj file
std::vector<glm::vec3> vertices;
std::vector<glm::vec2> uvs;
std::vector<glm::vec3> normals;
bool res = loadOBJ("suzanne.obj", vertices, uvs, normals);
std::vector<unsigned short> indices;
std::vector<glm::vec3> indexed_vertices;
std::vector<glm::vec2> indexed_uvs;
std::vector<glm::vec3> indexed_normals;
indexVBO(vertices, uvs, normals, indices, indexed_vertices, indexed_uvs, indexed_normals);
// Load it into a VBO
GLuint vertexbuffer;
glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_vertices.size() * sizeof(glm::vec3), &indexed_vertices[0], GL_STATIC_DRAW);
GLuint uvbuffer;
glGenBuffers(1, &uvbuffer);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_uvs.size() * sizeof(glm::vec2), &indexed_uvs[0], GL_STATIC_DRAW);
GLuint normalbuffer;
glGenBuffers(1, &normalbuffer);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glBufferData(GL_ARRAY_BUFFER, indexed_normals.size() * sizeof(glm::vec3), &indexed_normals[0], GL_STATIC_DRAW);
// Generate a buffer for the indices as well
GLuint elementbuffer;
glGenBuffers(1, &elementbuffer);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0] , GL_STATIC_DRAW);
// Get a handle for our "LightPosition" uniform
glUseProgram(programID);
GLuint LightID = glGetUniformLocation(programID, "LightPosition_worldspace");
// For speed computation
double lastTime = glfwGetTime();
int nbFrames = 0;
do{
// Measure speed
double currentTime = glfwGetTime();
nbFrames++;
if ( currentTime - lastTime >= 1.0 ){ // If last prinf() was more than 1sec ago
// printf and reset
printf("%f ms/frame
", 1000.0/double(nbFrames));
nbFrames = 0;
lastTime += 1.0;
}
// Clear the screen
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use our shader
glUseProgram(programID);
// Compute the MVP matrix from keyboard and mouse input
computeMatricesFromInputs();
glm::mat4 ProjectionMatrix = getProjectionMatrix();
glm::mat4 ViewMatrix = getViewMatrix();
glm::mat4 ModelMatrix = glm::mat4(1.0);
glm::mat4 MVP = ProjectionMatrix * ViewMatrix * ModelMatrix;
// Send our transformation to the currently bound shader,
// in the "MVP" uniform
glUniformMatrix4fv(MatrixID, 1, GL_FALSE, &MVP[0][0]);
glUniformMatrix4fv(ModelMatrixID, 1, GL_FALSE, &ModelMatrix[0][0]);
glUniformMatrix4fv(ViewMatrixID, 1, GL_FALSE, &ViewMatrix[0][0]);
glm::vec3 lightPos = glm::vec3(4,4,4);
glUniform3f(LightID, lightPos.x, lightPos.y, lightPos.z);
// Bind our texture in Texture Unit 0
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, Texture);
// Set our "myTextureSampler" sampler to use Texture Unit 0
glUniform1i(TextureID, 0);
// 1rst attribute buffer : vertices
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glVertexAttribPointer(
0, // attribute
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 2nd attribute buffer : UVs
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, uvbuffer);
glVertexAttribPointer(
1, // attribute
2, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// 3rd attribute buffer : normals
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, normalbuffer);
glVertexAttribPointer(
2, // attribute
3, // size
GL_FLOAT, // type
GL_FALSE, // normalized?
0, // stride
(void*)0 // array buffer offset
);
// Index buffer
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, elementbuffer);
// Draw the triangles !
glDrawElements(
GL_TRIANGLES, // mode
indices.size(), // count
GL_UNSIGNED_SHORT, // type
(void*)0 // element array buffer offset
);
glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);
glDisableVertexAttribArray(2);
// Swap buffers
glfwPollEvents();
glfwSwapBuffers(window);
} // Check if the ESC key was pressed or the window was closed
while( glfwGetKey(window, GLFW_KEY_ESCAPE ) != GLFW_PRESS &&
glfwWindowShouldClose(window) == 0 );
// Cleanup VBO and shader
glDeleteBuffers(1, &vertexbuffer);
glDeleteBuffers(1, &uvbuffer);
glDeleteBuffers(1, &normalbuffer);
glDeleteBuffers(1, &elementbuffer);
glDeleteProgram(programID);
glDeleteTextures(1, &Texture);
glDeleteVertexArrays(1, &VertexArrayID);
// Close OpenGL window and terminate GLFW
glfwTerminate();
return 0;
}
#version 330 core
// a big syntax error to demonstrate the point...
HELLO WORLD
// Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 LightDirection_cameraspace;
// Ouput data
out vec3 color;
// Values that stay constant for the whole mesh.
uniform sampler2D myTextureSampler;
uniform mat4 MV;
uniform vec3 LightPosition_worldspace;
void main(){
// Light emission properties
// You probably want to put them as uniforms
vec3 LightColor = vec3(1,1,1);
float LightPower = 50.0f;
// Material properties
vec3 MaterialDiffuseColor = texture( myTextureSampler, UV ).rgb;
vec3 MaterialAmbientColor = vec3(0.1,0.1,0.1) * MaterialDiffuseColor;
vec3 MaterialSpecularColor = vec3(0.3,0.3,0.3);
// Distance to the light
float distance = length( LightPosition_worldspace - Position_worldspace );
// Normal of the computed fragment, in camera space
vec3 n = normalize( Normal_cameraspace );
// Direction of the light (from the fragment to the light)
vec3 l = normalize( LightDirection_cameraspace );
// Cosine of the angle between the normal and the light direction,
// clamped above 0
// - light is at the vertical of the triangle -> 1
// - light is perpendicular to the triangle -> 0
// - light is behind the triangle -> 0
float cosTheta = clamp( dot( n,l ), 0,1 );
// Eye vector (towards the camera)
vec3 E = normalize(EyeDirection_cameraspace);
// Direction in which the triangle reflects the light
vec3 R = reflect(-l,n);
// Cosine of the angle between the Eye vector and the Reflect vector,
// clamped to 0
// - Looking into the reflection -> 1
// - Looking elsewhere -> < 1
float cosAlpha = clamp( dot( E,R ), 0,1 );
color =
// Ambient : simulates indirect lighting
MaterialAmbientColor +
// Diffuse : "color" of the object
MaterialDiffuseColor * LightColor * LightPower * cosTheta / (distance*distance) +
// Specular : reflective highlight, like a mirror
MaterialSpecularColor * LightColor * LightPower * pow(cosAlpha,5) / (distance*distance);
}
#version 330 core
// Input vertex data, different for all executions of this shader.
layout(location = 0) in vec3 vertexPosition_modelspace;
layout(location = 1) in vec2 vertexUV;
layout(location = 2) in vec3 vertexNormal_modelspace;
// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 LightDirection_cameraspace;
// Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;
uniform vec3 LightPosition_worldspace;
void main(){
// Output position of the vertex, in clip space : MVP * position
gl_Position = MVP * vec4(vertexPosition_modelspace,1);
// Position of the vertex, in worldspace : M * position
Position_worldspace = (M * vec4(vertexPosition_modelspace,1)).xyz;
// Vector that goes from the vertex to the camera, in camera space.
// In camera space, the camera is at the origin (0,0,0).
vec3 vertexPosition_cameraspace = ( V * M * vec4(vertexPosition_modelspace,1)).xyz;
EyeDirection_cameraspace = vec3(0,0,0) - vertexPosition_cameraspace;
// Vector that goes from the vertex to the light, in camera space. M is ommited because it's identity.
vec3 LightPosition_cameraspace = ( V * vec4(LightPosition_worldspace,1)).xyz;
LightDirection_cameraspace = LightPosition_cameraspace + EyeDirection_cameraspace;
// Normal of the the vertex, in camera space
Normal_cameraspace = ( V * M * vec4(vertexNormal_modelspace,0)).xyz; // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not.
// UV of the vertex. No special space for this one.
UV = vertexUV;
}