• VINS 检测回环辅助激光建图


    最近接到一个任务,在激光检测回环失败时,比如黑色物体多,场景大等,可否利用视觉进行回环检测。如果只是检测回环,现有的许多框架都可以使用。ORB-SLAM本身就有单目模式,且效果不错。但是发现ORB在检测回环时,必须要进行pose计算,产生地图点,然后根据地图点和回环之间的关系进行回环检测。这样就比较耗费资源,可否只检测回环,并不计算位姿与地图点。然后想到VINS也是有单目检测回环功能,就着手从VINS开始。

    1. feature_tracker模块

    这部分模块无需较大改动,只需要在节点里增加激光数据触发信号,让激光关键帧与图象帧保持数据同步

    2. estimator模块

    此部分会融合IMU做pose计算,所以这个节点在回环检测中不需要使用。需要在launch文件中,删去此节点,不运行。

    3. pose_graph模块

    3.1 此部分为回环检测核心模块

    首先修改订阅的topic,只需要订阅图像与feature_tracker发布的特征点信息。

       ros::Subscriber sub_image = n.subscribe(IMAGE_TOPIC, 2000, image_callback);
    
       ros::Subscriber sub_point = n.subscribe("/feature_tracker/feature", 2000, point_callback);
    
    
    3.2 修改KeyFrame构造函数

    以前的需要特征点对应的3D点,此时为了减少计算量,只需要特征点图像坐标与归一化坐标,以及特征点光流平均速度

    KeyFrame::KeyFrame(double _time_stamp, int _index, cv::Mat &_image,vector<cv::Point2f> &_point_2d_uv, vector<cv::Point2f> &_point_2d_normal, double _aver_velocity,  int _sequence)
    {
    	time_stamp = _time_stamp;
    	index = _index;
    	image = _image.clone();
    	cv::resize(image, thumbnail, cv::Size(80, 60));
    	std::cout<<"this is resize"<<std::endl;
    	point_2d_uv = _point_2d_uv;
    	point_2d_norm = _point_2d_normal;
    	has_loop = false;
    	loop_index = -1;
    	has_fast_point = false;
    	loop_info << 0, 0, 0, 0, 0, 0, 0, 0;
    	sequence = _sequence;
    	computeWindowBRIEFPoint();
    	computeBRIEFPoint();
    	aver_velocity = _aver_velocity;
    //这里可以把图像清除了,但是为了显示图像,可以暂且留着
            
    }
    
    3.3 改动的还有addkeyFrame

    为了减少计算量,当机器人静止时,可以不需要进行回环检测,这里判断条件就是特征点的平均光溜速度,对于这个阈值可以根据最小视差来决定。

    void PoseGraph::addKeyFrame(KeyFrame* cur_kf, bool flag_detect_loop)
    {
        //先判断是否关键帧
       std::cout<<"this is function of addKeyFrame"<<std::endl;
        if(cur_kf->aver_velocity<=0.2&&keyframelist.size()>0)
        {
    	      std::cout<<"loop index unchanged"<<last_loop_index<<std::endl;
        }else{
          
    	    if (sequence_cnt != cur_kf->sequence)
    		{
    		    sequence_cnt++;
    		    sequence_loop.push_back(0);
    		}
    		cur_kf->index = global_index;
    		last_index= global_index;
    		    int loop_index = -1;
    		if (flag_detect_loop)
    		{
    		    TicToc tmp_t;
    		    loop_index = detectLoop(cur_kf, cur_kf->index);
    		    last_loop_index = loop_index;
    		    std::cout<<"loop index is "<<loop_index<<std::endl;
    		    KeyFrame * old_kf = getKeyFrame(loop_index);
    		    if(loop_index !=-1)
    		    {
    			if(cur_kf->findConnection(old_kf))
    			{
    			  std::cout<<"this is true loop with index of : "<< loop_index<<std::endl;
    			}
    		    }
    		}
    		global_index++;
    		keyframelist.push_back(cur_kf);
    	    }
    }
    

    detectLoop函数没有做改动,对与findConnection函数做了如下改动。一开始以为可以不需要findConnection函数,直接用detectLoop得出的结果就能使用了,但是发现误匹配很多,VINS之前是使用

      PnPRANSAC(matched_2d_old_norm, matched_3d, status, PnP_T_old, PnP_R_old); 
    

    函数进行两帧之间的真实相似度检测。但是此函数需要3D点,且计算了相对位姿,并不适合我的任务,正好VINS的老版本仅仅使用了两帧图像的2d点进行验证,虽然精度略微降低,但是无需3D点,减少了计算量。

    bool KeyFrame::findConnection(KeyFrame* old_kf)
    {
    	std::cout<<"this is function of findConnection"<<std::endl;
    	TicToc tmp_t;
    	//printf("find Connection
    ");
    	vector<cv::Point2f> matched_2d_cur, matched_2d_old;
    	vector<cv::Point2f> matched_2d_cur_norm, matched_2d_old_norm;
    	vector<uchar> status;
    
    	matched_2d_cur = point_2d_uv;
    	matched_2d_cur_norm = point_2d_norm;
    
    	TicToc t_match;
    	std::cout<<"old_kf keypoint : "<<old_kf->keypoints.size()<<std::endl;
    	searchByBRIEFDes(matched_2d_old, matched_2d_old_norm, status, old_kf->brief_descriptors, old_kf->keypoints, old_kf->keypoints_norm);
    	
    	reduceVector(matched_2d_cur, status);
    	reduceVector(matched_2d_old, status);
    	reduceVector(matched_2d_cur_norm, status);
    	reduceVector(matched_2d_old_norm, status);
    
    	//printf("search by des finish
    ");
    	status.clear();
    	if ((int)matched_2d_cur.size() > MIN_LOOP_NUM)
    	{
    		status.clear();
    	     FundmantalMatrixRANSAC(matched_2d_cur_norm,matched_2d_old_norm,status);
    	    reduceVector(matched_2d_cur, status);
    	    reduceVector(matched_2d_old, status);
    	    reduceVector(matched_2d_cur_norm, status);
    	    reduceVector(matched_2d_old_norm, status);
    
    	        	int gap = 10;
    	        	cv::Mat gap_image(ROW, gap, CV_8UC1, cv::Scalar(255, 255, 255));
    	            cv::Mat gray_img, loop_match_img;
    	            cv::Mat old_img = old_kf->image;
    	            cv::hconcat(image, gap_image, gap_image);
    	            cv::hconcat(gap_image, old_img, gray_img);
    	            cvtColor(gray_img, loop_match_img, CV_GRAY2RGB);
    	            for(int i = 0; i< (int)matched_2d_cur.size(); i++)
    	            {
    	                cv::Point2f cur_pt = matched_2d_cur[i];
    	                cv::circle(loop_match_img, cur_pt, 5, cv::Scalar(0, 255, 0));
    	            }
    	            for(int i = 0; i< (int)matched_2d_old.size(); i++)
    	            {
    	                cv::Point2f old_pt = matched_2d_old[i];
    	                old_pt.x += (COL + gap);
    	                cv::circle(loop_match_img, old_pt, 5, cv::Scalar(0, 255, 0));
    	            }
    	            for (int i = 0; i< (int)matched_2d_cur.size(); i++)
    	            {
    	                cv::Point2f old_pt = matched_2d_old[i];
    	                old_pt.x += (COL + gap) ;
    	                cv::line(loop_match_img, matched_2d_cur[i], old_pt, cv::Scalar(0, 255, 0), 2, 8, 0);
    	            }
    	            cv::Mat notation(50, COL + gap + COL, CV_8UC3, cv::Scalar(255, 255, 255));
    	            putText(notation, "current frame: " + to_string(index) + "  sequence: " + to_string(sequence), cv::Point2f(20, 30), CV_FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255), 3);
    
    	            putText(notation, "previous frame: " + to_string(old_kf->index) + "  sequence: " + to_string(old_kf->sequence), cv::Point2f(20 + COL + gap, 30), CV_FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255), 3);
    	            cv::vconcat(notation, loop_match_img, loop_match_img);
    
    	            if ((int)matched_2d_cur.size() > MIN_LOOP_NUM)
    	            {
    	            	
    	            	cv::imshow("loop connection",loop_match_img);  
    	            	cv::waitKey(100);  
    			return true;
    	            }
    	}
    
    	//printf("loop final use num %d %lf--------------- 
    ", (int)matched_2d_cur.size(), t_match.toc());
    	return false;
    }
    

    效果如图所示。

  • 相关阅读:
    postgres导入和导出
    postgres日常操作
    NumPy Ndarray 对象
    NumPy 简介及安装
    Python两个内置函数locals 和globals
    python之multiprocessing多进程
    postgres外部表
    css中文本超出部分省略号代替
    js中的作用域链
    css中clip:rect矩形剪裁功能
  • 原文地址:https://www.cnblogs.com/easonslam/p/9040818.html
Copyright © 2020-2023  润新知