Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
中序遍历,Morris,线索二叉树……。
1 /** 2 * Definition for a binary tree node. 3 * struct TreeNode { 4 * int val; 5 * TreeNode *left; 6 * TreeNode *right; 7 * TreeNode(int x) : val(x), left(NULL), right(NULL) {} 8 * }; 9 */ 10 class Solution { 11 public: 12 int kthSmallest(TreeNode* root, int k) { 13 int cnt = 0; 14 TreeNode *p = root; 15 stack<TreeNode *> st; 16 while (p != NULL || !st.empty()) { 17 if (p != NULL) { 18 st.push(p); 19 p = p->left; 20 } else { 21 p = st.top(); 22 st.pop(); 23 if (++cnt == k) return p->val; 24 p = p->right; 25 } 26 } 27 } 28 };