先介绍tf idf
在一份给定的文件里,词频(term frequency,tf)指的是某一个给定的词语在该文件中出现的频率。这个数字是对词数(term count)的归一化,以防止它偏向长的文件。(同一个词语在长文件里可能会比短文件有更高的词数,而不管该词语重要与否。)对于在某一特定文件里的词语来说,它的重要性可表示为:
以上式子中是该词在文件中的出现次数,而分母则是在文件中所有字词的出现次数之和。
逆向文件频率(inverse document frequency,idf)是一个词语普遍重要性的度量。某一特定词语的idf,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取以10为底的对数得到:
其中
- |D|:语料库中的文件总数
- :包含词语的文件数目(即的文件数目)如果词语不在数据中,就导致分母为零,因此一般情况下使用
然后
某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的tf-idf。因此,tf-idf倾向于过滤掉常见的词语,保留重要的词语。
互信息:
一般地,两个离散随机变量 X 和 Y 的互信息可以定义为:
其中 p(x,y) 是 X 和 Y 的联合概率分布函数,而 和 分别是 X 和 Y 的边缘概率分布函数。
其中 p(x,y) 当前是 X 和 Y 的联合概率密度函数,而 和 分别是 X 和 Y 的边缘概率密度函数。
如果对数以 2 为基底,互信息的单位是bit。
直观上,互信息度量 X 和 Y 共享的信息:它度量知道这两个变量其中一个,对另一个不确定度减少的程度。例如,如果 X 和 Y 相互独立,则知道 X 不对 Y 提供任何信息,反之亦然,所以它们的互信息为零。在另一个极端,如果 X 是 Y 的一个确定性函数,且 Y 也是 X 的一个确定性函数,那么传递的所有信息被 X 和 Y共享:知道 X 决定 Y 的值,反之亦然。因此,在此情形互信息与 Y(或 X)单独包含的不确定度相同,称作 Y(或 X)的熵。而且,这个互信息与 X 的熵和 Y 的熵相同。(这种情形的一个非常特殊的情况是当 X 和 Y 为相同随机变量时。)
互信息是 X 和 Y 联合分布相对于假定 X 和 Y 独立情况下的联合分布之间的内在依赖性。 于是互信息以下面方式度量依赖性:I(X; Y) = 0 当且仅当 X 和 Y 为独立随机变量。从一个方向很容易看出:当 X 和 Y 独立时,p(x,y) = p(x) p(y),因此:
此外,互信息是非负的(即 I(X;Y) ≥ 0; 见下文),而且是对称的(即 I(X;Y) = I(Y;X))。
我们首先列出以下要用的一些变量:
D:文档随机变量D。
P(D):D的分布。
W:词条随机变量W。
P(W):W的分布。
P(D|W):已知W,D的条件分布。
P(wi,dj):提出词条wi,得到dj的概率。
F:所有文档相加的总次数。
Fij:词条i在文档j中出现的频率。
Fwi:词条wi在所有文档中的总频率。
Fdj:单个文档dj中的词数。
基于频率的概率模型:
我们假设词条wi提出的频率等于其出现的频率:
P(Wi)=Fwi/F
每个文档的出现概率与其包含词数成正比:
P(dj)=Fdj/F
提出wi以后,每个文档被取出的概率,也等于其包含wi频率比例:
P(dj|wi)=Fij/Fwi
Wi和dj同时发生的概率等于dj包含词条wi的频率:
P(wi,dj)=P(wi)*P(dj|wi)=Fwi/F*Fij/Fwi=Fij/F
H表示信息熵,I表示互信息,KL表示KL距离.
于是,再带入之前的信息论模型,得到:
熵:
KL距离:
PWI(互信息):
(1)
(2)
参考资料:
https://blog.csdn.net/ice110956/article/details/17243071