• Ceres-Solver学习日志:自动求导使用样例与针孔成像器的应用


    1.定义残差类

             基于自动求导的核心是定义残差类。

             说到要定义一个类,感觉是要实现很复杂的功能,而实际上该类就实现一个功能,即实现残差模型。

             必须在残差类中重截operator()实现残差模型,很多时候,残差类也就这么一个成员,无需再添加其它成员,就能实现残差模型。

             如何实现残差类取决于残差模型,反映在代码实现上,就是如何实现operator(),operator()的形式如下:

             template <typename tp> bool operator()(const tp * const param1,…, const tp * const param9, tp *residual) const {…}

             (1)以上给出的是十个参数的operator(),可根据实际情况选择参数个数,最少两个,最多十个。

             (2)最后一个参数residual是必须的,它用于保存计算的残差值,其维度等于残差项的个数。

             (3)前九个参数可根据实际需求裁剪,但至少一个。当被优化的所有参数可以归为一组时,就只需要一个;当被优化的参数需要被分为多组时,则需要多个。

        定义多少个残差类取决于具体业务模型,但不外乎也就以下几种情况:

             (1)定义一个残差类,这个残差类实现所有残差模型,耦合性强,不推荐。

             (2)定义多个残差类,某些残差类实现多个残差模型,耦合性强,不推荐。

             (3)定义多个残差类,每个残差类实现一个残差模型,每个残差模型实现所有时刻采集的数据,扩展性差,不推荐。

             (4)定义多个残差类,每个残差类实现一个残差模型,每个残差模型实现单个时刻采集的数据,扩展性好,最实用。 

             这里之所以还区分每个时刻,是因为对于某些业务,尽管残差模型一样,但在不同时刻采集数据,部分模型参数值(真值)不一样,所以给定的初值和被优化后的最优值不一样,如VSLAM中基于不同位置的观察数据来计算每次观察时的位姿和相机内参。

    2.使用残差类

             在决定了operator()的形式后,也就决定了微分类CostFunction和Problem::AddResidualBlock的使用形式。

             以AutoDiffCostFunction为例,其形式如下:

             AutoDiffCostFunction<Functor, int M, int N0=0, int N1=0, int N2=0, int N3=0, int N4=0, int N5=0, …, int N9=0>

             (1)第一个模板参数Functor就是定义好的残差类。

             (2)第二个模板参数表示残差项的个数,若运行时才能确定则用ceres::DYNMIC。

             (3)第三个及之后的模板参数,表示被优化的每组参数中包含的参数个数,即与operator()中参数对应,假设param2包含k个参数,则N2=k。

             Problem::AddResidualBlock的形式如下:

             Problem::AddResidualBlock(costfunction, lossfunction, param1,…param9)

             Problem::AddResidualBlock(costfunction, lossfunction, vectorparam)

             (1)前两个参数分别是微分模型和损失函数模型。

             (2)之后的九个参数具体要多少个,与operator()对应,也可以用std::vector合为一个参数后传进去。

    3.使用样例

             提供两个使用样例,封装为两个类:

             OptimizeRt:基于单次观察,优化此次观察的外参,定义了ProjectionModelRt类。

             OptimizeKDRt:基于多次观察,优化相机内参和所有观察的外参,定义了ProjectionModelKDRt类。

             其中类MotionSim用于生成仿真数据,使用说明参见《CV学习日志:CV开发之三维仿真器》。

             存在可能不收敛的测试结果,属于正常现象,可修改初值精度来增加收敛性。

             以下是详细代码,依赖于C++14、OpenCV4.x、Ceres和Spdlog。

      1 #include <opencv2/opencv.hpp>
      2 #include <opencv2/viz.hpp>
      3 #include <spdlog/spdlog.h>
      4 #include <ceres/ceres.h>
      5 using namespace std;
      6 using namespace cv;
      7 
      8 class MotionSim
      9 {
     10 public:
     11     static void TestMe(int argc, char** argv)
     12     {
     13         MotionSim motionSim(false);
     14         motionSim.camFovX = 45;
     15         motionSim.camFovY = 30;
     16         motionSim.camRand = 10;
     17         motionSim.enableVerbose = false;
     18         motionSim.runMotion(false, false, 7);
     19         motionSim.visMotion();
     20     }
     21 
     22 public:
     23     struct MotionView
     24     {
     25         Mat_<double> r = Mat_<double>(3, 1);
     26         Mat_<double> t = Mat_<double>(3, 1);
     27         Mat_<double> q = Mat_<double>(4, 1);
     28         Mat_<double> rt = Mat_<double>(6, 1);
     29         Mat_<double> radian = Mat_<double>(3, 1);
     30         Mat_<double> degree = Mat_<double>(3, 1);
     31         Mat_<double> R = Mat_<double>(3, 3);
     32         Mat_<double> T = Mat_<double>(3, 4);
     33         Mat_<double> K;
     34         Mat_<double> D;
     35         Mat_<Vec3d> point3D;
     36         Mat_<Vec2d> point2D;
     37         Mat_<int> point3DIds;
     38         string print(string savePath = "")
     39         {
     40             string str;
     41             str += fmt::format("r: {}
    ", cvarr2str(r.t()));
     42             str += fmt::format("t: {}
    ", cvarr2str(t.t()));
     43             str += fmt::format("q: {}
    ", cvarr2str(q.t()));
     44             str += fmt::format("rt: {}
    ", cvarr2str(rt.t()));
     45             str += fmt::format("radian: {}
    ", cvarr2str(radian.t()));
     46             str += fmt::format("degree: {}
    ", cvarr2str(degree.t()));
     47             str += fmt::format("R: {}
    ", cvarr2str(R));
     48             str += fmt::format("T: {}
    ", cvarr2str(T));
     49             str += fmt::format("K: {}
    ", cvarr2str(K));
     50             str += fmt::format("D: {}
    ", cvarr2str(D.t()));
     51             if (savePath.empty() == false) { FILE* out = fopen(savePath.c_str(), "w"); fprintf(out, str.c_str()); fclose(out); }
     52             return str;
     53         }
     54     };
     55     static string cvarr2str(InputArray v)
     56     {
     57         Ptr<Formatted> fmtd = cv::format(v, Formatter::FMT_DEFAULT);
     58         string dst; fmtd->reset();
     59         for (const char* str = fmtd->next(); str; str = fmtd->next()) dst += string(str);
     60         return dst;
     61     }
     62     static void euler2matrix(double e[3], double R[9], bool forward = true, int argc = 0, char** argv = 0)
     63     {
     64         if (argc > 0)
     65         {
     66             int N = 999;
     67             for (int k = 0; k < N; ++k)//OpenCV not better than DIY
     68             {
     69                 //1.GenerateData
     70                 Matx31d radian0 = radian0.randu(-3.14159265358979323846, 3.14159265358979323846);
     71                 Matx33d R; euler2matrix(radian0.val, R.val, true);
     72                 const double deg2rad = 3.14159265358979323846 * 0.0055555555555555556;
     73                 const double rad2deg = 180 * 0.3183098861837906715;
     74 
     75                 //2.CalcByOpenCV
     76                 Matx31d radian1 = cv::RQDecomp3x3(R, Matx33d(), Matx33d()) * deg2rad;
     77 
     78                 //3.CalcByDIY
     79                 Matx31d radian2; euler2matrix(R.val, radian2.val, false);
     80 
     81                 //4.AnalyzeError
     82                 double infRadian0Radian1 = norm(radian0, radian1, NORM_INF);
     83                 double infRadian1Radian2 = norm(radian1, radian2, NORM_INF);
     84 
     85                 //5.PrintError
     86                 cout << endl << "LoopCount: " << k << endl;
     87                 if (infRadian0Radian1 > 0 || infRadian1Radian2 > 0)
     88                 {
     89                     cout << endl << "5.1PrintError" << endl;
     90                     cout << endl << "infRadian0Radian1: " << infRadian0Radian1 << endl;
     91                     cout << endl << "infRadian1Radian2: " << infRadian1Radian2 << endl;
     92                     if (0)
     93                     {
     94                         cout << endl << "5.2PrintDiff" << endl;
     95                         cout << endl << "radian0-degree0:" << endl << radian0.t() << endl << radian0.t() * rad2deg << endl;
     96                         cout << endl << "radian1-degree1:" << endl << radian1.t() << endl << radian1.t() * rad2deg << endl;
     97                         cout << endl << "radian2-degree2:" << endl << radian2.t() << endl << radian2.t() * rad2deg << endl;
     98                         cout << endl << "5.3PrintOthers" << endl;
     99                         cout << endl << "R:" << endl << R << endl;
    100                     }
    101                     cout << endl << "Press any key to continue" << endl; std::getchar();
    102                 }
    103             }
    104             return;
    105         }
    106         if (forward)//check with 3D Rotation Converter
    107         {
    108             double sinR = std::sin(e[0]);
    109             double sinP = std::sin(e[1]);
    110             double sinY = std::sin(e[2]);
    111             double cosR = std::cos(e[0]);
    112             double cosP = std::cos(e[1]);
    113             double cosY = std::cos(e[2]);
    114 
    115             //RPY indicates: first Yaw aroundZ, second Pitch aroundY, third Roll aroundX
    116             R[0] = cosY * cosP; R[1] = cosY * sinP * sinR - sinY * cosR; R[2] = cosY * sinP * cosR + sinY * sinR;
    117             R[3] = sinY * cosP; R[4] = sinY * sinP * sinR + cosY * cosR; R[5] = sinY * sinP * cosR - cosY * sinR;
    118             R[6] = -sinP;       R[7] = cosP * sinR;                      R[8] = cosP * cosR;
    119         }
    120         else
    121         {
    122             double vs1 = std::abs(R[6] - 1.);
    123             double vs_1 = std::abs(R[6] + 1.);
    124             if (vs1 > 1E-9 && vs_1 > 1E-9)
    125             {
    126                 e[2] = std::atan2(R[3], R[0]); //Yaw aroundZ
    127                 e[1] = std::asin(-R[6]);//Pitch aroundY
    128                 e[0] = std::atan2(R[7], R[8]); //Roll aroundX
    129             }
    130             else if (vs_1 <= 1E-9)
    131             {
    132                 e[2] = 0; //Yaw aroundZ
    133                 e[1] = 3.14159265358979323846 * 0.5;//Pitch aroundY
    134                 e[0] = e[2] + atan2(R[1], R[2]); //Roll aroundX
    135             }
    136             else
    137             {
    138                 e[2] = 0; //Yaw aroundZ
    139                 e[1] = -3.14159265358979323846 * 0.5;//Pitch aroundY
    140                 e[0] = -e[2] + atan2(-R[1], -R[2]); //Roll aroundX
    141             }
    142         }
    143     };
    144     static void quat2matrix(double q[4], double R[9], bool forward = true)
    145     {
    146         if (forward)//refer to qglviwer
    147         {
    148             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
    149             if (std::abs(L1 - 1) > 1E-9) { std::printf("Not uint quaternion: NormQ=%.9f
    ", L1); abort(); }
    150 
    151             double xx = 2.0 * q[1] * q[1];
    152             double yy = 2.0 * q[2] * q[2];
    153             double zz = 2.0 * q[3] * q[3];
    154 
    155             double xy = 2.0 * q[1] * q[2];
    156             double xz = 2.0 * q[1] * q[3];
    157             double wx = 2.0 * q[1] * q[0];
    158 
    159             double yz = 2.0 * q[2] * q[3];
    160             double wy = 2.0 * q[2] * q[0];
    161 
    162             double wz = 2.0 * q[3] * q[0];
    163 
    164             R[0] = 1.0 - yy - zz;
    165             R[4] = 1.0 - xx - zz;
    166             R[8] = 1.0 - xx - yy;
    167 
    168             R[1] = xy - wz;
    169             R[3] = xy + wz;
    170 
    171             R[2] = xz + wy;
    172             R[6] = xz - wy;
    173 
    174             R[5] = yz - wx;
    175             R[7] = yz + wx;
    176         }
    177         else
    178         {
    179             double onePlusTrace = 1.0 + R[0] + R[4] + R[8];// Compute one plus the trace of the matrix
    180             if (onePlusTrace > 1E-9)
    181             {
    182                 double s = sqrt(onePlusTrace) * 2.0;
    183                 double is = 1 / s;
    184                 q[0] = 0.25 * s;
    185                 q[1] = (R[7] - R[5]) * is;
    186                 q[2] = (R[2] - R[6]) * is;
    187                 q[3] = (R[3] - R[1]) * is;
    188             }
    189             else
    190             {
    191                 std::printf("1+trace(R)=%.9f is too small and (R11,R22,R33)=(%.9f,%.9f,%.9f)
    ", onePlusTrace, R[0], R[4], R[8]);
    192                 if ((R[0] > R[4]) && (R[0] > R[8]))//max(R00, R11, R22)=R00
    193                 {
    194                     double s = sqrt(1.0 + R[0] - R[4] - R[8]) * 2.0;
    195                     double is = 1 / s;
    196                     q[0] = (R[5] - R[7]) * is;
    197                     q[1] = 0.25 * s;
    198                     q[2] = (R[1] + R[3]) * is;
    199                     q[3] = (R[2] + R[6]) * is;
    200                 }
    201                 else if (R[4] > R[8])//max(R00, R11, R22)=R11
    202                 {
    203                     double s = sqrt(1.0 - R[0] + R[4] - R[8]) * 2.0;
    204                     double is = 1 / s;
    205                     q[0] = (R[2] - R[6]) * is;
    206                     q[1] = (R[1] + R[3]) * is;
    207                     q[2] = 0.25 * s;
    208                     q[3] = (R[5] + R[7]) * is;
    209                 }
    210                 else//max(R00, R11, R22)=R22
    211                 {
    212                     double s = sqrt(1.0 - R[0] - R[4] + R[8]) * 2.0;
    213                     double is = 1 / s;
    214                     q[0] = (R[1] - R[3]) * is;
    215                     q[1] = (R[2] + R[6]) * is;
    216                     q[2] = (R[5] + R[7]) * is;
    217                     q[3] = 0.25 * s;
    218                 }
    219             }
    220             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
    221             if (L1 < 1e-9) { std::printf("Wrong rotation matrix: NormQ=%.9f
    ", L1); abort(); }
    222             else { L1 = 1 / L1; q[0] *= L1; q[1] *= L1; q[2] *= L1; q[3] *= L1; }
    223         }
    224     }
    225     static void vec2quat(double r[3], double q[4], bool forward = true)
    226     {
    227         if (forward)//refer to qglviwer
    228         {
    229             double theta = std::sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]);
    230             if (std::abs(theta) < 1E-9)
    231             {
    232                 q[0] = 1; q[1] = q[2] = q[3] = 0;
    233                 std::printf("Rotation approximates zero: Theta=%.9f
    ", theta);
    234             };
    235 
    236             q[0] = std::cos(theta * 0.5);
    237             double ss = std::sin(theta * 0.5) / theta;
    238             q[1] = r[0] * ss;
    239             q[2] = r[1] * ss;
    240             q[3] = r[2] * ss;
    241         }
    242         else
    243         {
    244             double L1 = std::sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
    245             if (std::abs(L1 - 1) > 1E-9) { std::printf("Not uint quaternion: NormQ=%.9f
    ", L1); abort(); }
    246 
    247             double theta = 2 * acos(q[0]);
    248             if (theta > 3.14159265358979323846) theta = 2 * 3.14159265358979323846 - theta;
    249             double thetaEx = theta / std::sin(theta * 0.5);
    250             r[0] = q[1] * thetaEx;
    251             r[1] = q[2] * thetaEx;
    252             r[2] = q[3] * thetaEx;
    253         }
    254     }
    255     static void vec2matrix(double r[3], double R[9], bool forward = true, int argc = 0, char** argv = 0)
    256     {
    257         if (argc > 0)
    258         {
    259             int N = 999;
    260             for (int k = 0; k < N; ++k) //refer to the subsequent article for more details
    261             {
    262                 //1.GenerateData
    263                 Matx31d r0 = r0.randu(-999, 999);
    264                 Matx33d R0; cv::Rodrigues(r0, R0);
    265 
    266                 //2.CalcByOpenCV
    267                 Matx33d R1;
    268                 Matx31d r1;
    269                 cv::Rodrigues(r0, R1);
    270                 cv::Rodrigues(R0, r1);
    271 
    272                 //3.CalcByDIY
    273                 Matx33d R2;
    274                 Matx31d r2;
    275                 vec2matrix(r0.val, R2.val, true);
    276                 vec2matrix(r2.val, R0.val, false);
    277 
    278                 //4.AnalyzeError
    279                 double infR1R2 = norm(R1, R2, NORM_INF);
    280                 double infr1r2 = norm(r1, r2, NORM_INF);
    281 
    282                 //5.PrintError
    283                 cout << endl << "LoopCount: " << k << endl;
    284                 if (infR1R2 > 1E-12 || infr1r2 > 1E-12)
    285                 {
    286                     cout << endl << "5.1PrintError" << endl;
    287                     cout << endl << "infR1R2: " << infR1R2 << endl;
    288                     cout << endl << "infr1r2: " << infr1r2 << endl;
    289                     if (0)
    290                     {
    291                         cout << endl << "5.2PrintDiff" << endl;
    292                         cout << endl << "R1: " << endl << R1 << endl;
    293                         cout << endl << "R2: " << endl << R2 << endl;
    294                         cout << endl;
    295                         cout << endl << "r1: " << endl << r1.t() << endl;
    296                         cout << endl << "r2: " << endl << r2.t() << endl;
    297                         cout << endl << "5.3PrintOthers" << endl;
    298                     }
    299                     cout << endl << "Press any key to continue" << endl; std::getchar();
    300                 }
    301             }
    302             return;
    303         }
    304 
    305         if (forward)
    306         {
    307             double theta = std::sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]);
    308             if (theta < 1E-9)
    309             {
    310                 R[0] = R[4] = R[8] = 1.0;
    311                 R[1] = R[2] = R[3] = R[5] = R[6] = R[7] = 0.0;
    312                 std::printf("Rotation approximates zero: Theta=%.9f
    ", theta);
    313                 return;
    314             }
    315             double cs = cos(theta);
    316             double sn = sin(theta);
    317             double itheta = 1. / theta;
    318             double cs1 = 1 - cs;
    319             double nx = r[0] * itheta;
    320             double ny = r[1] * itheta;
    321             double nz = r[2] * itheta;
    322 
    323             double nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
    324             double nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
    325             double nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
    326 
    327             R[0] = nxnx * cs1 + cs;
    328             R[3] = nxny * cs1 + nzsn;
    329             R[6] = nxnz * cs1 - nysn;
    330 
    331             R[1] = nxny * cs1 - nzsn;
    332             R[4] = nyny * cs1 + cs;
    333             R[7] = nynz * cs1 + nxsn;
    334 
    335             R[2] = nxnz * cs1 + nysn;
    336             R[5] = nynz * cs1 - nxsn;
    337             R[8] = nznz * cs1 + cs;
    338 
    339             if (0)
    340             {
    341                 Mat_<double> dRdu({ 9, 4 }, {
    342                     2 * nx * cs1, 0, 0, (nxnx - 1) * sn,
    343                     ny * cs1, nx * cs1, -sn, nxny * sn - nz * cs,
    344                     nz * cs1, sn, nx * cs1, nxnz * sn + ny * cs,
    345                     ny * cs1, nx * cs1, sn, nxny * sn + nz * cs,
    346                     0, 2 * ny * cs1, 0, (nyny - 1) * sn,
    347                     -sn, nz * cs1, ny * cs1, nynz * sn - nx * cs,
    348                     nz * cs1, -sn, nx * cs1, nxnz * sn - ny * cs,
    349                     sn, nz * cs1, ny * cs1, nynz * sn + nx * cs,
    350                     0, 0, 2 * nz * cs1, (nznz - 1) * sn });
    351 
    352                 Mat_<double> dudv({ 4, 4 }, {
    353                     itheta, 0, 0, -nx * itheta,
    354                     0, itheta, 0, -ny * itheta,
    355                     0, 0, itheta, -nz * itheta,
    356                     0, 0, 0, 1 });
    357 
    358                 Mat_<double> dvdr({ 4, 3 }, {
    359                     1, 0, 0,
    360                     0, 1, 0,
    361                     0, 0, 1,
    362                     nx, ny, nz });
    363 
    364                 Mat_<double> Jacobian = dRdu * dudv * dvdr;//rows=9 cols=3
    365             }
    366         }
    367         else
    368         {
    369             double sx = R[7] - R[5];
    370             double sy = R[2] - R[6];
    371             double sz = R[3] - R[1];
    372             double sn = sqrt(sx * sx + sy * sy + sz * sz) * 0.5;
    373             double cs = (R[0] + R[4] + R[8] - 1) * 0.5;
    374             double theta = acos(cs);
    375             double ss = 2 * sn;
    376             double iss = 1. / ss;
    377             double tss = theta * iss;
    378             r[0] = tss * sx;
    379             r[1] = tss * sy;
    380             r[2] = tss * sz;
    381 
    382             if (0)
    383             {
    384                 Mat_<double> drdu({ 3, 4 }, {
    385                     tss, 0, 0, (sn - theta * cs) * iss * iss * sx * 2,
    386                     0, tss, 0, (sn - theta * cs) * iss * iss * sy * 2,
    387                     0, 0, tss, (sn - theta * cs) * iss * iss * sz * 2 });
    388 
    389                 Mat_<double> dudR({ 4, 9 }, {
    390                     0, 0, 0, 0, 0, -1, 0, 1, 0,
    391                     0, 0, 1, 0, 0, 0, -1, 0, 0,
    392                     0, -1, 0, 1, 0, 0, 0, 0, 0,
    393                     -iss, 0, 0, 0, -iss, 0, 0, 0, -iss });
    394 
    395                 Mat_<double> Jacobian = drdu * dudR;//rows=3 cols=9
    396             }
    397         }
    398     }
    399 
    400 private:
    401     const int nHorPoint3D = 100;
    402     const int nVerPoint3D = 100;
    403     const double varPoint3DXY = 10.;
    404     const double minPoint3DZ = 1.;
    405     const double maxPoint3DZ = 99.;
    406     const double minCamZ = 101.;
    407     const double maxCamZ = 150.;
    408     const double varCamDegree = 10.;
    409     Mat_<Vec3d> allPoint3D = Mat_<Vec3d>(nVerPoint3D * nHorPoint3D, 1);
    410     Mat_<double> allPoint3DZ = Mat_<double>(nVerPoint3D * nHorPoint3D, 1);
    411     Mat_<double> K;
    412     Mat_<double> D;
    413     const double deg2rad = 3.14159265358979323846 * 0.0055555555555555556;
    414     const double rad2deg = 180 * 0.3183098861837906715;
    415 
    416 public:
    417     int camRows = 480;
    418     int camCols = 640;
    419     int camFovY = 90;
    420     int camFovX = 90;
    421     int camRand = 10;//append random[0,camRand] to camera intrinsics
    422     int nCamDist = 5;//refer to opencv for value domain
    423     int nMinMotion = 32; // no less than X motion views
    424     int nMaxMotion = INT_MAX; // no more than X motion views
    425     int nPoint2DThenExit = 32;//exit when less than X pixies
    426     int rotMode = 1 + 2 + 4;//0=noRot 1=xAxis 2=yAxis 4=zAxis
    427     bool noTrans = false;//translate or not while motion
    428     bool world2D = false;//planar world or not
    429     bool rndSeek = true;//use random seek or not
    430     bool enableVerbose = false;//check motions one by one or not
    431     vector<MotionView> motionViews;//World Information: RightX, FrontY, DownZ
    432     MotionSim(bool run = true, bool world2D0 = false, bool noTrans0 = false, int rotMode0 = 7) { if (run) runMotion(world2D0, noTrans0, rotMode0); }
    433 
    434 public:
    435     void runMotion(bool world2D0 = false, bool noTrans0 = false, int rotMode0 = 7)
    436     {
    437         world2D = world2D0;
    438         noTrans = noTrans0;
    439         rotMode = rotMode0;
    440         motionViews.clear();
    441         if (rndSeek) cv::setRNGSeed(clock());
    442         while (motionViews.size() < nMinMotion)
    443         {
    444             //1.GetAllPoint3D
    445             if (world2D) allPoint3DZ = 0.;
    446             else cv::randu(allPoint3DZ, -maxPoint3DZ, -minPoint3DZ);//DownZ
    447             for (int i = 0, k = 0; i < nVerPoint3D; ++i)
    448                 for (int j = 0; j < nHorPoint3D; ++j, ++k)
    449                     allPoint3D(k) = Vec3d((j + cv::randu<double>()) * varPoint3DXY, (i + cv::randu<double>()) * varPoint3DXY, allPoint3DZ(i, j));
    450 
    451             //2.GetCamParams
    452             double camFx = camCols / 2. / std::tan(camFovX / 2. * deg2rad) + cv::randu<double>() * camRand;
    453             double camFy = camRows / 2. / std::tan(camFovY / 2. * deg2rad) + cv::randu<double>() * camRand;
    454             double camCx = camCols / 2. + cv::randu<double>() * camRand;
    455             double camCy = camRows / 2. + cv::randu<double>() * camRand;
    456             K.create(3, 3); K << camFx, 0, camCx, 0, camFy, camCy, 0, 0, 1;
    457             D.create(nCamDist, 1); cv::randu(D, -1.0, 1.0);
    458 
    459             //3.GetAllMotionView
    460             motionViews.clear();
    461             for (int64 k = 0; ; ++k)
    462             {
    463                 //3.1 JoinCamParams
    464                 MotionView view;
    465                 view.K = K.clone();
    466                 view.D = D.clone();
    467 
    468                 //3.2 GetCamTrans
    469                 if (k == 0) view.t(0) = view.t(1) = 0;
    470                 else
    471                 {
    472                     view.t(0) = motionViews[k - 1].t(0) + cv::randu<double>() * varPoint3DXY;
    473                     view.t(1) = motionViews[k - 1].t(1) + cv::randu<double>() * varPoint3DXY;
    474                 }
    475                 view.t(2) = minCamZ + cv::randu<double>() * (maxCamZ - minCamZ);
    476                 view.t(2) = -view.t(2);//DownZ
    477                 if (noTrans && k != 0) { view.t(0) = motionViews[0].t(0); view.t(1) = motionViews[0].t(1); view.t(2) = motionViews[0].t(2); }
    478 
    479                 //3.3 GetCamRot: degree-->radian-->matrix-->vector&quaternion
    480                 view.degree = 0.;
    481                 if (rotMode & 1) view.degree(0) = cv::randu<double>() * varCamDegree;
    482                 if (rotMode & 2) view.degree(1) = cv::randu<double>() * varCamDegree;
    483                 if (rotMode & 4) view.degree(2) = cv::randu<double>() * varCamDegree;
    484                 view.radian = view.degree * deg2rad;
    485                 euler2matrix(view.radian.ptr<double>(), view.R.ptr<double>());
    486                 cv::Rodrigues(view.R, view.r);
    487                 quat2matrix(view.q.ptr<double>(), view.R.ptr<double>(), false);
    488                 cv::hconcat(view.R, view.t, view.T);
    489                 cv::vconcat(view.r, view.t, view.rt);
    490 
    491                 //3.4 GetPoint3DAndPoint2D
    492                 Mat_<Vec2d> allPoint2D;
    493                 cv::projectPoints(allPoint3D, -view.r, -view.R.t() * view.t, view.K, view.D, allPoint2D);
    494                 for (int k = 0; k < allPoint2D.total(); ++k)
    495                     if (allPoint2D(k)[0] > 0 && allPoint2D(k)[0] < camCols && allPoint2D(k)[1] > 0 && allPoint2D(k)[1] < camRows)
    496                     {
    497                         view.point2D.push_back(allPoint2D(k));
    498                         view.point3D.push_back(allPoint3D(k));
    499                         view.point3DIds.push_back(k);
    500                     }
    501 
    502                 //3.5 PrintDetails
    503                 motionViews.push_back(view);
    504                 if (enableVerbose)
    505                 {
    506                     cout << endl << view.print();
    507                     cout << fmt::format("view={}   features={}
    ", k, view.point2D.rows);
    508                     double minV = 0, maxV = 0;//Distortion makes some minV next to maxV
    509                     int minId = 0, maxId = 0;
    510                     cv::minMaxIdx(allPoint2D.reshape(1, int(allPoint2D.total()) * allPoint2D.channels()), &minV, &maxV, &minId, &maxId);
    511                     cout << fmt::format("minInfo:({}, {})", minId, minV) << allPoint3D(minId / 2) << allPoint2D(minId / 2) << endl;
    512                     cout << fmt::format("maxInfo:({}, {})", maxId, maxV) << allPoint3D(maxId / 2) << allPoint2D(maxId / 2) << endl;
    513                     cout << "Press any key to continue" << endl; std::getchar();
    514                 }
    515                 if (view.point2D.rows < nPoint2DThenExit || motionViews.size() > nMaxMotion) break;
    516             }
    517         }
    518     }
    519     void visMotion()
    520     {
    521         //1.CreateWidgets
    522         Size2d validSize(nHorPoint3D * varPoint3DXY, nVerPoint3D * varPoint3DXY);
    523         Mat_<cv::Affine3d> camPoses(int(motionViews.size()), 1); for (int k = 0; k < camPoses.rows; ++k) camPoses(k) = cv::Affine3d(motionViews[k].T);
    524         viz::WText worldInfo(fmt::format("nMotionView: {}
    K: {}
    D: {}", motionViews.size(), cvarr2str(K), cvarr2str(D)), Point(10, 240), 10);
    525         viz::WCoordinateSystem worldCSys(1000);
    526         viz::WPlane worldGround(Point3d(validSize.width / 2, validSize.height / 2, 0), Vec3d(0, 0, 1), Vec3d(0, 1, 0), validSize);
    527         viz::WCloud worldPoints(allPoint3D, Mat_<Vec3b>(allPoint3D.size(), Vec3b(0, 255, 0)));
    528         viz::WTrajectory camTraj1(camPoses, viz::WTrajectory::FRAMES, 8);
    529         viz::WTrajectorySpheres camTraj2(camPoses, 100, 2);
    530         viz::WTrajectoryFrustums camTraj3(camPoses, Matx33d(K), 4., viz::Color::yellow());
    531         worldCSys.setRenderingProperty(viz::OPACITY, 0.1);
    532         worldGround.setRenderingProperty(viz::OPACITY, 0.1);
    533         camTraj2.setRenderingProperty(viz::OPACITY, 0.6);
    534 
    535         //2.ShowWidgets
    536         static viz::Viz3d viz3d(__FUNCTION__);
    537         viz3d.showWidget("worldInfo", worldInfo);
    538         viz3d.showWidget("worldCSys", worldCSys);
    539         viz3d.showWidget("worldGround", worldGround);
    540         viz3d.showWidget("worldPoints", worldPoints);
    541         viz3d.showWidget("camTraj1", camTraj1);
    542         viz3d.showWidget("camTraj2", camTraj2);
    543         viz3d.showWidget("camTraj3", camTraj3);
    544 
    545         //3.UpdateWidghts
    546         static const vector<MotionView>& views = motionViews;
    547         viz3d.registerKeyboardCallback([](const viz::KeyboardEvent& keyboarEvent, void* pVizBorad)->void
    548             {
    549                 if (keyboarEvent.action != viz::KeyboardEvent::KEY_DOWN) return;
    550                 static int pos = 0;
    551                 if (keyboarEvent.code == ' ')
    552                 {
    553                     size_t num = views.size();
    554                     size_t ind = pos % num;
    555                     double xmin3D = DBL_MAX, ymin3D = DBL_MAX, xmin2D = DBL_MAX, ymin2D = DBL_MAX;
    556                     double xmax3D = -DBL_MAX, ymax3D = -DBL_MAX, xmax2D = -DBL_MAX, ymax2D = -DBL_MAX;
    557                     for (size_t k = 0; k < views[ind].point3D.rows; ++k)
    558                     {
    559                         Vec3d pt3 = views[ind].point3D(int(k));
    560                         Vec2d pt2 = views[ind].point2D(int(k));
    561                         if (pt3[0] < xmin3D) xmin3D = pt3[0];
    562                         if (pt3[0] > xmax3D) xmax3D = pt3[0];
    563                         if (pt3[1] < ymin3D) ymin3D = pt3[1];
    564                         if (pt3[1] > ymax3D) ymax3D = pt3[1];
    565                         if (pt2[0] < xmin2D) xmin2D = pt2[0];
    566                         if (pt2[0] > xmax2D) xmax2D = pt2[0];
    567                         if (pt2[1] < ymin2D) ymin2D = pt2[1];
    568                         if (pt2[1] > ymax2D) ymax2D = pt2[1];
    569                     }
    570                     if (pos != 0)
    571                     {
    572                         for (int k = 0; k < views[ind == 0 ? num - 1 : ind - 1].point3D.rows; ++k) viz3d.removeWidget("active" + std::to_string(k));
    573                         viz3d.removeWidget("viewInfo");
    574                         viz3d.removeWidget("camSolid");
    575                     }
    576                     for (int k = 0; k < views[ind].point3D.rows; ++k) viz3d.showWidget("active" + std::to_string(k), viz::WSphere(views[ind].point3D(k), 5, 10));
    577                     viz3d.showWidget("viewInfo", viz::WText(fmt::format("CurrentMotion: {}
    ValidPoints: {}
    Min3DXY_Min2DXY: {}, {}, {}, {}
    Max3DXY_Max2DXY: {}, {}, {}, {}
    Rot_Trans_Euler: {}
    ",
    578                         ind, views[ind].point3D.rows, xmin3D, ymin3D, xmin2D, ymin2D, xmax3D, ymax3D, xmax2D, ymax2D,
    579                         cvarr2str(views[ind].r.t()) + cvarr2str(views[ind].t.t()) + cvarr2str(views[ind].degree.t())), Point(10, 10), 10));
    580                     viz3d.showWidget("camSolid", viz::WCameraPosition(Matx33d(views[ind].K), 10, viz::Color::yellow()), cv::Affine3d(views[ind].T));
    581                     ++pos;
    582                 }
    583             }, 0);
    584         viz3d.spin();
    585     }
    586 };
    587 
    588 class OptimizeRt
    589 {
    590 public:
    591     using MotionView = MotionSim::MotionView;
    592     static void TestMe(int argc = 0, char** argv = 0)
    593     {
    594         int N = 99;
    595         for (int k = 0; k < N; ++k)
    596         {
    597             //1.GenerateData
    598             bool world2D = k % 2;
    599             int rotMode = k % 7 + 1;
    600             MotionSim motionSim(false);
    601             motionSim.camFovX = 90;
    602             motionSim.camFovY = 90;
    603             motionSim.camRand = 10;
    604             motionSim.nMinMotion = 16;//2
    605             motionSim.nMaxMotion = 32;//4
    606             motionSim.rndSeek = false;
    607             motionSim.nCamDist = 5;
    608             motionSim.runMotion(world2D, false, rotMode);
    609             //motionSim.visMotion();
    610             int rndInd = int(motionSim.motionViews.size() * cv::randu<double>());
    611             Mat_<double> r0 = -motionSim.motionViews[rndInd].r;
    612             Mat_<double> t0 = -motionSim.motionViews[rndInd].R.t() * motionSim.motionViews[rndInd].t;
    613             const MotionView& motionView = motionSim.motionViews[rndInd];
    614             double errRatio = 0.9;
    615 
    616             //2.CalcByCeres
    617             Mat_<double> r1 = r0 * errRatio;
    618             Mat_<double> t1 = t0 * errRatio;
    619             ceres::Problem problem;
    620             problem.AddResidualBlock(new ceres::AutoDiffCostFunction<ProjectionModelRt, ceres::DYNAMIC, 3, 3>(
    621                 new ProjectionModelRt(motionView, motionSim.nCamDist), motionView.point3D.rows * 2), NULL, r1.ptr<double>(), t1.ptr<double>());
    622             ceres::Solver::Options options;
    623             ceres::Solver::Summary summary;
    624             ceres::Solve(options, &problem, &summary);
    625             int nIter1 = (int)summary.iterations.size();
    626 
    627             //3.AnalyzeError
    628             double infr0r0 = norm(r0, r0 * errRatio, NORM_INF);
    629             double infr0r1 = norm(r0, r1, NORM_INF);
    630             double inft0t0 = norm(t0, t0 * errRatio, NORM_INF);
    631             double inft0t1 = norm(t0, t1, NORM_INF);
    632 
    633             //4.PrintError
    634             cout << fmt::format("LoopCount: {}      CeresSolver.iters: {}
    ", k, nIter1);
    635             if (infr0r1 > 1e-8 || inft0t1 > 1e-8)
    636             {
    637                 cout << fmt::format("infr0r1: {:<15.9}		{:<15.9}
    ", infr0r1, infr0r0);
    638                 cout << fmt::format("inft0t1: {:<15.9}		{:<15.9}
    ", inft0t1, inft0t0);
    639                 cout << "Press any key to continue" << endl; std::getchar();
    640             }
    641         }
    642     }
    643 
    644 public:
    645     struct ProjectionModelRt
    646     {
    647         const int nDist;
    648         double K[4];
    649         const double* D;
    650         Mat_<Vec2d> point2D;
    651         Mat_<Vec3d> point3D;
    652         ProjectionModelRt(const MotionView& motionView0, const int nDist0) : nDist(nDist0)
    653         {
    654             K[0] = motionView0.K(0, 0);
    655             K[1] = motionView0.K(1, 1);
    656             K[2] = motionView0.K(0, 2);
    657             K[3] = motionView0.K(1, 2);
    658             D = motionView0.D.ptr<double>();
    659             point2D = motionView0.point2D;
    660             point3D = motionView0.point3D;
    661         }
    662         template <typename tp> bool operator()(const tp* const rot, const tp* const t, tp* errPoint2D) const
    663         {
    664             //1.Projection params
    665             double fx = K[0];
    666             double fy = K[1];
    667             double cx = K[2];
    668             double cy = K[3];
    669 
    670             //2.Distortion params
    671             double k1 = D[0];
    672             double k2 = D[1];
    673             double p1 = D[2];
    674             double p2 = D[3];
    675             double k3, k4, k5, k6;
    676             double s1, s2, s3, s4;
    677             if (nDist > 4) k3 = D[4];
    678             if (nDist > 5) { k4 = D[5]; k5 = D[6]; k6 = D[7]; }
    679             if (nDist > 8) { s1 = D[8]; s2 = D[9]; s3 = D[10]; s4 = D[11]; }
    680 
    681             //3.Translation params
    682             tp tx = t[0];
    683             tp ty = t[1];
    684             tp tz = t[2];
    685 
    686             //4.Rotation params
    687             tp R11, R12, R13, R21, R22, R23, R31, R32, R33;
    688             {
    689                 tp theta = sqrt(rot[0] * rot[0] + rot[1] * rot[1] + rot[2] * rot[2]);
    690                 tp cs = cos(theta);
    691                 tp sn = sin(theta);
    692                 tp itheta = 1. / theta;//if denominator==0
    693                 tp cs1 = 1. - cs;
    694                 tp nx = rot[0] * itheta;
    695                 tp ny = rot[1] * itheta;
    696                 tp nz = rot[2] * itheta;
    697 
    698                 tp nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
    699                 tp nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
    700                 tp nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
    701 
    702                 R11 = nxnx * cs1 + cs;
    703                 R21 = nxny * cs1 + nzsn;
    704                 R31 = nxnz * cs1 - nysn;
    705 
    706                 R12 = nxny * cs1 - nzsn;
    707                 R22 = nyny * cs1 + cs;
    708                 R32 = nynz * cs1 + nxsn;
    709 
    710                 R13 = nxnz * cs1 + nysn;
    711                 R23 = nynz * cs1 - nxsn;
    712                 R33 = nznz * cs1 + cs;
    713             }
    714 
    715             //5.ReProjection
    716             const Vec2d* data2D = point2D.ptr<Vec2d>();
    717             const Vec3d* data3D = point3D.ptr<Vec3d>();
    718             Vec<tp, 2>* err2D = (Vec<tp, 2>*)errPoint2D;
    719             for (int k = 0; k < point3D.rows; ++k)
    720             {
    721                 //5.1 WorldCoordinate
    722                 double X = data3D[k][0];
    723                 double Y = data3D[k][1];
    724                 double Z = data3D[k][2];
    725 
    726                 //5.2 CameraCoordinate
    727                 tp x = R11 * X + R12 * Y + R13 * Z + tx;
    728                 tp y = R21 * X + R22 * Y + R23 * Z + ty;
    729                 tp z = R31 * X + R32 * Y + R33 * Z + tz;
    730 
    731                 //5.3 StandardPhysicsCoordinate
    732                 tp iz = 1. / z; //if denominator==0
    733                 tp xc = x * iz;
    734                 tp yc = y * iz;
    735 
    736                 //5.4 DistortionPhysicsCoordinate
    737                 tp xc2 = xc * xc;
    738                 tp yc2 = yc * yc;
    739                 tp d2 = xc2 + yc2;
    740                 tp xcyc = 2. * xc * yc;
    741                 tp d4 = d2 * d2;
    742                 tp d6 = d2 * d4;
    743                 tp d2xc2 = d2 + 2. * xc2;
    744                 tp d2yc2 = d2 + 2. * yc2;
    745                 tp nu, de, xd, yd;
    746                 if (nDist < 5)
    747                 {
    748                     nu = 1. + k1 * d2 + k2 * d4;
    749                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
    750                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
    751                 }
    752                 else if (nDist < 8)
    753                 {
    754                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    755                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
    756                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
    757                 }
    758                 else if (nDist < 12)
    759                 {
    760                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    761                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
    762                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2;
    763                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2;
    764                 }
    765                 else if (nDist < 14)
    766                 {
    767                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    768                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
    769                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2 + s1 * d2 + s2 * d4;
    770                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2 + s3 * d2 + s4 * d4;
    771                 }
    772                 err2D[k][0] = xd * fx + cx - data2D[k][0];
    773                 err2D[k][1] = yd * fy + cy - data2D[k][1];
    774             }
    775             return true;
    776         }
    777     };
    778 };
    779 
    780 class OptimizeKDRt
    781 {
    782 public:
    783     using MotionView = MotionSim::MotionView;
    784     static void TestMe(int argc = 0, char** argv = 0)
    785     {
    786         int N = 99;
    787         for (int k = 0; k < N; ++k)
    788         {
    789             //1.GenerateData
    790             bool world2D = k % 2;
    791             int rotMode = k % 7 + 1;
    792             MotionSim motionSim(false);
    793             motionSim.camFovX = 90;
    794             motionSim.camFovY = 90;
    795             motionSim.camRand = 10;
    796             motionSim.nMinMotion = 16;//2
    797             motionSim.nMaxMotion = 32;//4
    798             motionSim.rndSeek = false;
    799             static const int nDist = 5;
    800             motionSim.nCamDist = nDist;
    801             motionSim.runMotion(world2D, false, rotMode);
    802             //motionSim.visMotion();
    803             Mat_<double> rs0; for (size_t k = 0; k < motionSim.motionViews.size(); ++k) rs0.push_back(-motionSim.motionViews[k].r);
    804             Mat_<double> ts0; for (size_t k = 0; k < motionSim.motionViews.size(); ++k) ts0.push_back(-motionSim.motionViews[k].R.t() * motionSim.motionViews[k].t);
    805             Mat_<double> K0({ 4, 1 }, { motionSim.motionViews[0].K(0, 0), motionSim.motionViews[0].K(1, 1), motionSim.motionViews[0].K(0, 2), motionSim.motionViews[0].K(1, 2) });
    806             Mat_<double> D0 = motionSim.motionViews[0].D.clone();
    807             double errRatio = 0.9;
    808             double errRatioTrans = 0.99;
    809 
    810             //2.CalcByCeres
    811             Mat_<double> rs1 = rs0 * errRatio;
    812             Mat_<double> ts1 = ts0 * errRatioTrans;
    813             Mat_<double> K1 = K0 * errRatio;
    814             Mat_<double> D1 = D0 * errRatio;
    815             ceres::Problem problem;
    816             for (int k = 0; k < motionSim.motionViews.size(); ++k)
    817                 problem.AddResidualBlock(new ceres::AutoDiffCostFunction<ProjectionModelKDRt, ceres::DYNAMIC, 3, 3, 4, nDist>(
    818                     new ProjectionModelKDRt(motionSim.motionViews[k], motionSim.nCamDist), motionSim.motionViews[k].point3D.rows * 2), NULL,
    819                     rs1.ptr<double>(k * 3), ts1.ptr<double>(k * 3),
    820                     K1.ptr<double>(), D1.ptr<double>());
    821             ceres::Solver::Options options;
    822             ceres::Solver::Summary summary;
    823             ceres::Solve(options, &problem, &summary);
    824             int nIter1 = (int)summary.iterations.size();
    825 
    826             //3.AnalyzeError
    827             double infrs0rs0 = norm(rs0, rs0 * errRatio, NORM_INF);
    828             double infrs0rs1 = norm(rs0, rs1, NORM_INF);
    829             double infts0ts0 = norm(ts0, ts0 * errRatioTrans, NORM_INF);
    830             double infts0ts1 = norm(ts0, ts1, NORM_INF);
    831             double infK0K0 = norm(K0, K0 * errRatio, NORM_INF);
    832             double infK0K1 = norm(K0, K1, NORM_INF);
    833             double infD0D0 = norm(D0, D0 * errRatio, NORM_INF);
    834             double infD0D1 = norm(D0, D1, NORM_INF);
    835 
    836             //4.PrintError
    837             cout << fmt::format("LoopCount: {}      CeresSolver.iters: {}
    ", k, nIter1);
    838             if (infrs0rs1 > 1e-8 || infts0ts1 > 1e-8 || infK0K1 > 1e-8 || infD0D1 > 1e-8)
    839             {
    840                 cout << fmt::format("infrs0rs1: {:<15.9}		{:<15.9}
    ", infrs0rs1, infrs0rs0);
    841                 cout << fmt::format("infts0ts1: {:<15.9}		{:<15.9}
    ", infts0ts1, infts0ts0);
    842                 cout << fmt::format("infK0K1  : {:<15.9}		{:<15.9}
    ", infK0K1, infK0K0);
    843                 cout << fmt::format("infD0D1  : {:<15.9}		{:<15.9}
    ", infD0D1, infD0D0);
    844                 cout << "Press any key to continue" << endl; std::getchar();
    845             }
    846         }
    847     }
    848 
    849 public:
    850     struct ProjectionModelKDRt
    851     {
    852         const int nDist;
    853         Mat_<Vec2d> point2D;
    854         Mat_<Vec3d> point3D;
    855         ProjectionModelKDRt(const MotionView& motionView0, const int nDist0) : nDist(nDist0)
    856         {
    857             point2D = motionView0.point2D;
    858             point3D = motionView0.point3D;
    859         }
    860         template <typename tp> bool operator()(const tp* const rot, const tp* const t, const tp* const K, const tp* const D, tp* errPoint2D) const
    861         {
    862             //1.Projection params
    863             tp fx = K[0];
    864             tp fy = K[1];
    865             tp cx = K[2];
    866             tp cy = K[3];
    867 
    868             //2.Distortion params
    869             tp k1 = D[0];
    870             tp k2 = D[1];
    871             tp p1 = D[2];
    872             tp p2 = D[3];
    873             tp k3, k4, k5, k6;
    874             tp s1, s2, s3, s4;
    875             if (nDist > 4) k3 = D[4];
    876             if (nDist > 5) { k4 = D[5]; k5 = D[6]; k6 = D[7]; }
    877             if (nDist > 8) { s1 = D[8]; s2 = D[9]; s3 = D[10]; s4 = D[11]; }
    878 
    879             //3.Translation params
    880             tp tx = t[0];
    881             tp ty = t[1];
    882             tp tz = t[2];
    883 
    884             //4.
    885             tp R11, R12, R13, R21, R22, R23, R31, R32, R33;
    886             {
    887                 tp theta = sqrt(rot[0] * rot[0] + rot[1] * rot[1] + rot[2] * rot[2]);
    888                 tp cs = cos(theta);
    889                 tp sn = sin(theta);
    890                 tp itheta = 1. / theta;//if denominator==0
    891                 tp cs1 = 1. - cs;
    892                 tp nx = rot[0] * itheta;
    893                 tp ny = rot[1] * itheta;
    894                 tp nz = rot[2] * itheta;
    895 
    896                 tp nxnx = nx * nx, nyny = ny * ny, nznz = nz * nz;
    897                 tp nxny = nx * ny, nxnz = nx * nz, nynz = ny * nz;
    898                 tp nxsn = nx * sn, nysn = ny * sn, nzsn = nz * sn;
    899 
    900                 R11 = nxnx * cs1 + cs;
    901                 R21 = nxny * cs1 + nzsn;
    902                 R31 = nxnz * cs1 - nysn;
    903 
    904                 R12 = nxny * cs1 - nzsn;
    905                 R22 = nyny * cs1 + cs;
    906                 R32 = nynz * cs1 + nxsn;
    907 
    908                 R13 = nxnz * cs1 + nysn;
    909                 R23 = nynz * cs1 - nxsn;
    910                 R33 = nznz * cs1 + cs;
    911             }
    912 
    913             //5.ReProjection
    914             const Vec2d* data2D = point2D.ptr<Vec2d>();
    915             const Vec3d* data3D = point3D.ptr<Vec3d>();
    916             Vec<tp, 2>* err2D = (Vec<tp, 2>*)errPoint2D;
    917             for (int k = 0; k < point3D.rows; ++k)
    918             {
    919                 //5.1 WorldCoordinate
    920                 double X = data3D[k][0];
    921                 double Y = data3D[k][1];
    922                 double Z = data3D[k][2];
    923 
    924                 //5.2 CameraCoordinate
    925                 tp x = R11 * X + R12 * Y + R13 * Z + tx;
    926                 tp y = R21 * X + R22 * Y + R23 * Z + ty;
    927                 tp z = R31 * X + R32 * Y + R33 * Z + tz;
    928 
    929                 //5.3 StandardPhysicsCoordinate
    930                 tp iz = 1. / z; //if denominator==0
    931                 tp xc = x * iz;
    932                 tp yc = y * iz;
    933 
    934                 //5.4 DistortionPhysicsCoordinate
    935                 tp xc2 = xc * xc;
    936                 tp yc2 = yc * yc;
    937                 tp d2 = xc2 + yc2;
    938                 tp xcyc = 2. * xc * yc;
    939                 tp d4 = d2 * d2;
    940                 tp d6 = d2 * d4;
    941                 tp d2xc2 = d2 + 2. * xc2;
    942                 tp d2yc2 = d2 + 2. * yc2;
    943                 tp nu, de, xd, yd;
    944                 if (nDist < 5)
    945                 {
    946                     nu = 1. + k1 * d2 + k2 * d4;
    947                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
    948                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
    949                 }
    950                 else if (nDist < 8)
    951                 {
    952                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    953                     xd = xc * nu + p1 * xcyc + p2 * d2xc2;
    954                     yd = yc * nu + p2 * xcyc + p1 * d2yc2;
    955                 }
    956                 else if (nDist < 12)
    957                 {
    958                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    959                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
    960                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2;
    961                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2;
    962                 }
    963                 else if (nDist < 14)
    964                 {
    965                     nu = 1. + k1 * d2 + k2 * d4 + k3 * d6;
    966                     de = 1. / (1. + k4 * d2 + k5 * d4 + k6 * d6);//if denominator==0
    967                     xd = xc * nu * de + p1 * xcyc + p2 * d2xc2 + s1 * d2 + s2 * d4;
    968                     yd = yc * nu * de + p2 * xcyc + p1 * d2yc2 + s3 * d2 + s4 * d4;
    969                 }
    970                 err2D[k][0] = xd * fx + cx - data2D[k][0];
    971                 err2D[k][1] = yd * fy + cy - data2D[k][1];
    972             }
    973             return true;
    974         }
    975     };
    976 };
    977 
    978 int main(int argc, char** argv) { OptimizeKDRt::TestMe(argc, argv); return 0; }
    979 int main1(int argc, char** argv) { OptimizeRt::TestMe(argc, argv); return 0; }
    980 int main2(int argc, char** argv) { OptimizeKDRt::TestMe(argc, argv); return 0; }
    View Code
  • 相关阅读:
    大数据学习——hive数据类型
    大数据学习——关于hive中的各种join
    大数据学习——hive的sql练习
    大数据学习——hive显示命令
    大数据学习——hive数仓DML和DDL操作
    大数据学习——hive基本操作
    大数据学习——hive使用
    大数据学习——hive安装部署
    大数据学习——日志分析
    大数据学习——mapreduce运营商日志增强
  • 原文地址:https://www.cnblogs.com/dzyBK/p/13939694.html
Copyright © 2020-2023  润新知