How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Problem Description
Now
you get a number N, and a M-integers set, you should find out how many
integers which are small than N, that they can divided exactly by any
integers in the set. For example, N=12, and M-integer set is {2,3}, so
there is another set {2,3,4,6,8,9,10}, all the integers of the set can
be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There
are a lot of cases. For each case, the first line contains two integers
N and M. The follow line contains the M integers, and all of them are
different from each other. 0<N<2^31,0<M<=10, and the M
integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2
2 3
Sample Output
7
分析:容斥原理,注意long long;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <bitset> #include <map> #include <queue> #include <stack> #include <vector> #define rep(i,m,n) for(i=m;i<=n;i++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define sys system("pause") const int maxn=1e5+10; using namespace std; inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} inline void umax(ll &p,ll q){if(p<q)p=q;} inline void umin(ll &p,ll q){if(p>q)p=q;} inline ll read() { ll x=0;int f=1;char ch=getchar(); while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} return x*f; } int n,m,k,t,fac[20],all; int main() { int i,j; while(~scanf("%d%d",&m,&n)) { --m; all=0; rep(i,0,n-1) { scanf("%d",&j); if(j)fac[all++]=j; } ll ret=0; rep(i,1,(1<<all)-1) { ll now=1,cnt=0; rep(j,0,all-1) { if(i&(1<<j)) { cnt++; now=now*fac[j]/gcd(now,fac[j]); } } if(cnt&1)ret+=m/now; else ret-=m/now; } printf("%lld ",ret); } return 0; }