• How many integers can you find


    How many integers can you find

    Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

    Problem Description
      Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
     
    Input
      There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
     
    Output
      For each case, output the number.
     
    Sample Input
    12 2 2 3
     
    Sample Output
    7
    分析:容斥原理,注意long long;
    代码:
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #include <climits>
    #include <cstring>
    #include <string>
    #include <set>
    #include <bitset>
    #include <map>
    #include <queue>
    #include <stack>
    #include <vector>
    #define rep(i,m,n) for(i=m;i<=n;i++)
    #define mod 1000000007
    #define inf 0x3f3f3f3f
    #define vi vector<int>
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define ll long long
    #define pi acos(-1.0)
    #define pii pair<int,int>
    #define sys system("pause")
    const int maxn=1e5+10;
    using namespace std;
    inline ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);}
    inline ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    inline void umax(ll &p,ll q){if(p<q)p=q;}
    inline void umin(ll &p,ll q){if(p>q)p=q;}
    inline ll read()
    {
        ll x=0;int f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    int n,m,k,t,fac[20],all;
    int main()
    {
        int i,j;
        while(~scanf("%d%d",&m,&n))
        {
            --m;
            all=0;
            rep(i,0,n-1)
            {
                scanf("%d",&j);
                if(j)fac[all++]=j;
            }
            ll ret=0;
            rep(i,1,(1<<all)-1)
            {
                ll now=1,cnt=0;
                rep(j,0,all-1)
                {
                    if(i&(1<<j))
                    {
                        cnt++;
                        now=now*fac[j]/gcd(now,fac[j]);
                    }
                }
                if(cnt&1)ret+=m/now;
                else ret-=m/now;
            }
            printf("%lld
    ",ret);
        }
        return 0;
    }
  • 相关阅读:
    c# IOSerialize 验证码、图片缩放
    SqlServer 分库分表
    权限系统数据库设计
    SqlServer 读写分离
    树转二叉树
    数据结构:图的存储结构之邻接矩阵、邻接表
    【数据结构】数据结构-图的基本概念
    哈夫曼树
    二叉树遍历方法
    Oracle 检查约束check
  • 原文地址:https://www.cnblogs.com/dyzll/p/6360113.html
Copyright © 2020-2023  润新知