• poj 1068 Parencodings (模拟)


    Parencodings
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 17169   Accepted: 10296

    Description

    Let S = s1 s2...s2n be a well-formed string of parentheses. S can be encoded in two different ways:
    q By an integer sequence P = p1 p2...pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
    q By an integer sequence W = w1 w2...wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).

    Following is an example of the above encodings:
    	S		(((()()())))
    
    	P-sequence	    4 5 6666
    
    	W-sequence	    1 1 1456
    
    

    Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.

    Input

    The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.

    Output

    The output file consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.

    Sample Input

    2
    6
    4 5 6 6 6 6
    9 
    4 6 6 6 6 8 9 9 9
    

    Sample Output

    1 1 1 4 5 6
    1 1 2 4 5 1 1 3 9

    Source

     
    题意:

    对于给出的原括号串,存在两种数字密码串:

    1.p序列:当出现匹配括号对时,从该括号对的右括号开始往左数,直到最前面的左括号数,就是pi的值。

    2.w序列:当出现匹配括号对时,包含在该括号对中的所有右括号数(包括该括号对,就是wi的值。

    题目的要求:对给出的p数字串,求出对应的s串。串长均<=20.

    提示:在处理括号序列时可以使用一个小技巧,把括号序列转化为01序列,左0右1,处理时比较方便

    代码:

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    using namespace std;
    
    int p[30];
    int w[30];
    int s[100];
    
    int main()
    {
        int t,n,i,j,k,q;
        int sum1,sum2,head,rear,t1,t2,headw,rearw;
        scanf("%d",&t);
        while(t--)
        {
            sum1=0,sum2=0,head=0,rear=0;
            scanf("%d",&n);
            for(i=0;i<n;i++)
            {
                scanf("%d",&p[i]);
                if(sum1<p[i])
                {
                    for(j=0;j<p[i]-sum1;j++)
                        s[rear++]=0;
                    sum1=p[i];
                }
                s[rear++]=1;
                sum2++;
            }
            rearw=headw=0;
            while(head!=rear)
            {
                t1=0,t2=0;
                if(s[head]==1)
                {
                    t1++;
                    if(s[head-1]==0)
                        w[rearw++]=1;
                    else
                    {
                        t1++;
                        q=head-1;
                        while(t1!=t2)
                        {
                            q--;
                            if(s[q]==0)
                                t2++;
                            else
                                t1++;
                        }
                        w[rearw++]=t1;
                    }
                    head++;
                }
                else
                    head++;
            }
            for(k=0;k<rearw;k++)
                printf("%d%c",w[k],k==rearw-1?'
    ':' ');
        }
        return 0;
    }
    


     

    11924371

    fukan

    1068

    Accepted

    144K

    0MS

    C++

    1426B

    2013-08-05 16:19:34

  • 相关阅读:
    ZIP压缩算法详细分析及解压实例解释
    nyoj 269 VF
    骨牌覆盖问题 KxM
    骨牌覆盖问题
    省赛总结...
    归并排序求逆序对
    「JLOI2014」松鼠的新家
    「JSOI2011」任务调度
    「JSOI2010」找零钱的洁癖
    「JSOI2011」棒棒糖
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3238860.html
Copyright © 2020-2023  润新知