• [leetcode]Binary Tree Level Order Traversal II


    Given a binary tree, return the bottom-up level order traversal of its nodes' values. (ie, from left to right, level by level from leaf to root).

    For example:
    Given binary tree {3,9,20,#,#,15,7},

        3
       / 
      9  20
        /  
       15   7
    

     

    return its bottom-up level order traversal as:

    [
      [15,7]
      [9,20],
      [3],
    ]
    /**
     * Definition for binary tree
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<vector<int> > levelOrderBottom(TreeNode *root) {
            // Start typing your C/C++ solution below
            // DO NOT write int main() function
            stack<vector<int>> s;
            if(!root) return vector<vector<int>>();
            
            queue<TreeNode*> q1,q2;
            q1.push(root);
            
            TreeNode *cur;
            vector<int> tmp;
            
            while(!q1.empty()){
                tmp.clear();
                while(!q1.empty()){
                    cur = q1.front();
                    q1.pop();
                    
                    tmp.push_back(cur -> val);
                    if(cur -> left) q2.push(cur -> left);
                    if(cur -> right) q2.push(cur -> right);
                }
                s.push(tmp);
                swap(q1, q2);
            }
            
            vector<int> curVec;
            vector<vector<int>> result;
            while(!s.empty()){
                curVec = s.top();
                s.pop();
                result.push_back(curVec);
            }
            return result;
            
        }
            
        
    };



  • 相关阅读:
    python爬虫基础(requests、BeautifulSoup)
    python中字典按键、值进行排序
    进程和线程的区别
    MySQL中的索引
    python中浅拷贝和深拷贝的区别
    谈谈final、finally、finalize的区别
    python中布尔值是false
    生成器的阐释
    文件处理
    内置函数
  • 原文地址:https://www.cnblogs.com/dyllove98/p/3165648.html
Copyright © 2020-2023  润新知