这题和 COT1 一定有 JQ 喵~
线段树的启发式合并,每次要连接两个点时就对比较小的那棵树暴力 DFS 一边
然后均摊时间依旧是 logn 的,均摊真是世界上最邪恶的东西了……
然后这题的数据是要卖萌么?!
testcase 的存在意义是被阿卡林噎掉了么?!
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 const int sizeOfPoint=100001; 5 const int sizeOfEdge=200002; 6 const int sizeOfNode=20000002; 7 8 inline int lg(int); 9 inline void swap(int & , int & ); 10 inline char getch(); 11 inline int getint(); 12 inline void putint(int); 13 14 struct edge {int point; edge * next;}; 15 edge memory_edge[sizeOfEdge], * port_edge=memory_edge; 16 inline edge * newedge(int, edge * ); 17 inline void link(int, int); 18 19 struct node {int c; node * l , * r; inline node();}; 20 node * null=new node(); 21 node memory_node[sizeOfNode], * port_node=memory_node; 22 inline node * newnode(node * =null); 23 node * insert(node * , int, int, int); 24 25 int b[sizeOfPoint], s[sizeOfPoint]; 26 int find(int); 27 inline void merge(int, int); 28 29 int testcase; 30 int N, M, T, U; 31 int p[sizeOfPoint], q[sizeOfPoint]; 32 int f[sizeOfPoint], d[sizeOfPoint], a[32][sizeOfPoint]; 33 edge * e[sizeOfPoint]; 34 node * t[sizeOfPoint]; 35 inline void clear(); 36 inline bool cmp(int, int); 37 inline void discretization(); 38 void dfs(int); 39 inline int lca(int, int); 40 inline int query(int, int, int); 41 42 int main() 43 { 44 int lastans=0; 45 46 testcase=getint(); 47 for (testcase=1;testcase;testcase--) 48 { 49 N=getint(), M=getint(), T=getint(); 50 clear(); 51 for (int i=1;i<=N;i++) 52 p[i]=getint(); 53 for (int i=1;i<=M;i++) 54 { 55 int u=getint(), v=getint(); 56 link(u, v); 57 } 58 discretization(); 59 60 for (int i=1;i<=N;i++) if (f[i]==-1) 61 { 62 f[i]=0; d[i]=0; 63 dfs(i); 64 } 65 66 for (int i=1;i<=T;i++) 67 { 68 char c=getch(); int x=getint()^lastans, y=getint()^lastans; 69 if (c=='Q') 70 { 71 int k=getint()^lastans; 72 lastans=query(x, y, k); 73 putint(lastans); 74 } 75 else 76 { 77 int bx=find(x), by=find(y); 78 if (bx==by) continue; 79 if (s[bx]<s[by]) swap(x, y); 80 link(x, y); 81 f[y]=x; d[y]=d[x]+1; 82 dfs(y); 83 } 84 } 85 } 86 87 return 0; 88 } 89 90 inline int lg(int x) 91 { 92 return 31-__builtin_clz(x); 93 } 94 inline void swap(int & x, int & y) 95 { 96 int z=x; 97 x=y; 98 y=z; 99 } 100 inline char getch() 101 { 102 register char ch; 103 do ch=getchar(); while (ch!='L' && ch!='Q'); 104 return ch; 105 } 106 inline int getint() 107 { 108 register int num=0; 109 register char ch=0, last; 110 do last=ch, ch=getchar(); while (ch<'0' || ch>'9'); 111 do num=num*10+ch-'0', ch=getchar(); while (ch>='0' && ch<='9'); 112 if (last=='-') num=-num; 113 return num; 114 } 115 inline void putint(int num) 116 { 117 char stack[11]; 118 register int top=0; 119 if (num==0) stack[top=1]='0'; 120 if (num<0) putchar('-'), num=-num; 121 for ( ;num;num/=10) stack[++top]=num%10+'0'; 122 for ( ;top;top--) putchar(stack[top]); 123 putchar(' '); 124 } 125 126 inline edge * newedge(int point, edge * next) 127 { 128 edge * ret=port_edge++; 129 ret->point=point; ret->next=next; 130 return ret; 131 } 132 inline void link(int u, int v) 133 { 134 e[u]=newedge(v, e[u]); 135 e[v]=newedge(u, e[v]); 136 merge(u, v); 137 } 138 139 inline node::node() 140 { 141 this->c=0; 142 this->l=this; 143 this->r=this; 144 } 145 inline node * newnode(node * t) 146 { 147 node * newt=port_node++; 148 *newt=*t; 149 return newt; 150 } 151 node * insert(node * t, int l, int r, int k) 152 { 153 t=newnode(t); 154 t->c++; 155 if (l==r) return t; 156 157 int m=(l+r)>>1; 158 if (k<=m) t->l=insert(t->l, l, m, k); 159 else t->r=insert(t->r, m+1, r, k); 160 return t; 161 } 162 163 int find(int u) 164 { 165 return !b[u]?u:b[u]=find(b[u]); 166 } 167 inline void merge(int u, int v) 168 { 169 u=find(u); v=find(v); 170 b[v]=u; s[u]+=s[v]; 171 } 172 173 inline void clear() 174 { 175 port_edge=memory_edge; 176 memset(e, 0, sizeof(e)); 177 port_node=memory_node; 178 for (int i=0;i<=N;i++) t[i]=null; 179 memset(f, -1, sizeof(f)); 180 memset(d, -1, sizeof(d)); 181 memset(b, 0, sizeof(b)); 182 memset(a, 0, sizeof(a)); 183 for (int i=1;i<=N;i++) s[i]=1; 184 } 185 inline bool cmp(int a, int b) 186 { 187 return p[a]<p[b]; 188 } 189 inline void discretization() 190 { 191 static int k[sizeOfPoint]; 192 193 for (int i=1;i<=N;i++) k[i]=i; 194 std::sort(k+1, k+N+1, cmp); 195 196 q[U=1]=p[k[1]]; p[k[1]]=1; 197 for (int i=2;i<=N;i++) 198 { 199 if (p[k[i]]>q[U]) q[++U]=p[k[i]]; 200 p[k[i]]=U; 201 } 202 } 203 void dfs(int u) 204 { 205 t[u]=insert(t[f[u]], 1, U, p[u]); 206 if (d[u]>0) 207 { 208 int lim=lg(d[u]); 209 a[0][u]=f[u]; 210 for (int i=1;i<=lim;i++) 211 a[i][u]=a[i-1][a[i-1][u]]; 212 for (int i=lim+1;i<31;i++) 213 a[i][u]=0; 214 } 215 216 for (edge * i=e[u];i;i=i->next) if (i->point!=f[u]) 217 { 218 f[i->point]=u; 219 d[i->point]=d[u]+1; 220 dfs(i->point); 221 } 222 } 223 inline int lca(int u, int v) 224 { 225 if (d[u]<d[v]) swap(u, v); 226 while (int dist=d[u]-d[v]) u=a[__builtin_ctz(dist)][u]; 227 if (u==v) return u; 228 for (int i=31;i>=0;i--) 229 if (a[i][u]!=a[i][v]) 230 u=a[i][u], 231 v=a[i][v]; 232 return f[u]; 233 } 234 inline int query(int a, int b, int k) 235 { 236 int c=lca(a, b), d=f[c]; 237 node * ta=t[a], * tb=t[b], * tc=t[c], * td=t[d]; 238 int l=1, r=U, m; 239 240 for ( ;l<r; ) 241 { 242 m=(l+r)>>1; 243 if (ta->l->c+tb->l->c-tc->l->c-td->l->c>=k) 244 { 245 ta=ta->l; tb=tb->l; tc=tc->l; td=td->l; 246 r=m; 247 } 248 else 249 { 250 k-=ta->l->c+tb->l->c-tc->l->c-td->l->c; 251 ta=ta->r; tb=tb->r; tc=tc->r; td=td->r; 252 l=m+1; 253 } 254 } 255 256 return q[l]; 257 }